Surface Modification of Iron-alloy Steels by Plasma Nitriding Process

Hwa-Soon PARK, Chung-Yun KANG and Kazuhiro NAKATA

1. 서 언

현대산업사회에 있어서, 재료의 고기능·고수명화 등에 대한 요구가 더욱 높아짐에 따라서, 세련된 표면의 개질(改質) 기술에 대한 중요성이 한층 증대되고 있다. 표면개질층에서 재료의 자제의 기본적인 성질은 변화시키지 않고 표면의 경도만을 증가시키며, 그 재료의 내마모성등을 향상시키는 표면경화 처리법은 오래전부터 많은 연구가 수행되어 왔으며, 또한 현재의 표면개질기술의 중심이 되어 있다. 일반적으로 금속재료의 표면경화처리법은 표면에 경질(硬質)의 물질을 피복하는 코팅법과, 침관법이나 질화법과 같이 금속표면으로부터 다른 원소를 확산침투시켜 재료표면 그 자체를 경화시키는 확산침투법으로 대변할 수 있다. 이들 코팅법과 표면확산침투법은 각각 장단점이 가지고 있으나, 표면확산침투법은 표면의 절연성과, 코팅께스트 등의 관점으로부터, 금속재료에 대한 표면경화법으로서 공업적으로 널리 보급되어 있다. 표면확산침투법에 의한 표면경화법중에서, 절화법은 주로 침강재료에 적용되는 침관법에 비하여 비교적 저온에서 처리가 가능하며, 변형이 적기 때문에 정밀부품에도 혁명이 된다. 또한 내피로성 및 내식성도 향상하는 등의 장점을 가지고 있으므로, 1923년 Fry에 의하여 아모니아가스질화법이 개발되기 이래 지금까지 널리 사용되고 있다. 그러나 가스질화법은 절화처리에 장시간을 요하며, 표면상에 취약한 Zn-Fe2N상이 생성되기 때문에 절화 후 표면의 연마가 필요하다는 결점이 가지고 있다. 그리고 열용질화법의 경우는 절화속도가 빠르다는 장점을 가지고 있으나, 시험연 및 시험상품을 사용하기 때문에 환경오염에 대한 걱정이 주의가 요구되는 결점을 가지고 있다. 이러한 가스 및 열용질화법의 결점 등을 해결하기 위하여 플라즈마질화법(Plasma Nitriding Process)이 개발되었다. 이 방법은 저압의 분위기중에서 글로우(glow)방전을 이용하여 질소가스를 이온화하고, 그것을 응극의 피처링여의 표면에 충돌시켜 질화 처리를 하는 방법이다. 이 방법은 1944년 Bennek 등에 의하여 시도가 된 것으로, 절화층의 취화(鶏化)방지 및 절화시간의 단축등이 인정되었는데, 그 실용화는 최근이라고 할 수 있다.

철강재료에 대한 플라즈마질화법의 적용 예는
지금까지 많은 연구결과가 나와 있는데, 탄소강이나 저합금강의 경우는 그 표면도가 Hv400~900, 고합금강의 경우는 Hv1000이상의 강도를 얻을 수 있으며, 내마모성도 향상한다.
그리고 플라즈마질화처리에 의한 질화층의 형성기구나 화합물층 및 확산층의 생성에 관여하는 처리조건의 영향, 질화층의 경도 및 깊이에 대한 함금원소의 영향등이 어느 정도 밝혀져 있다.
스테인레스강의 경우는 그 표면에 견고한 산화피막을 형성하기 때문에 열유질화나 가스질화법에 의한 처리가 일반적으로 권장된다. 그러나 플라즈마질화처리에 의하면, 분위기를 점소와 수소의 혼합가스로 함으로써 특별한 전처리를 하지 않고도 질화처리가 가능한 것으로 알려져 있다.
또한 철강재료의 비철금속에 대한 플라즈마 질화처리의 적용이 검토되었으며, 질화물은 형성하기 쉬운 Ti와 그 함금, Zr, Al 그리고 V, W의 원소는 Hv1000이상의 경도가 얻어진다는 것과 최적질화조건이 보고되어 있다.
또한 질화물을 형성하지 않는 금속, 즉 Ni와 Cu함금 등에 대하여도 Ti, Al 등의 질화물생성원소를 첨가하여 플라즈마질화법에 의한 표면형성특성을 검토되고 있다.

본 해설에서는, 탄소강, 탄소저합금강 등의 철강재료를 중심으로하여 플라즈마질화처리의 경우의 표면형성특성에 대하여 서술하고자 한다.

† 플라즈마방식에 의한 질화법은 현재 여러 용어로서 알려지고 있는데, 예를 들어, 플라즈마질화법, 이온질화법, 플라즈마(+) 이온질화법등이 그것이다. 본 해설에서는 플라즈마질화법으로 부르기로 한다.

2. 플라즈마질화법의 특징

그림 1의 A와 B에 철강재료를 대상으로 한 플라즈마질화의 원리 및 장치의 개략도를 나타내었다.
플라즈마질화처리법은 N2가스를 포함하는 130~1300Pa의 저압 분위기중에서 피처리물을 응곡으로 하고, 진공용기의 벽을 양극으로 하여 양극(Two-electrode)과의 사이에 수100V의 직류전압을 인가하여 블로우(glow)방전을 발생시키고, 블로우중에서 이온화

그림 2 플라즈마질화장치의 개략도

원 N2, H2, H2, NH4라는 이온이 응극강하전압에 의하여 가속되어 피처리물의 표면에 충돌하므로 질화를 행하는 표면형성법이다. 이 때 이온의 운동에너지가 열에너지로 변환되며, 응극
은 표면으로부터 균일하게 가열되기 때문에, 히터는 필요하지 않는다. 그리고 충돌과 동시에 응극의

플라즈마질화법에 의한 강의 재성질

4. 플라즈마질화처리된 강의 재성질

4.1 질화층의 경도 및 깊이

표 3에는 각종 금속재료의 플라즈마질화후의 재성상태의 예를 나타내었다. 질화처리에 의한 경화율 (Hv5/HvB) 은, 철강의 경우 약 1.5~4.0 정도를 나타내고 있으나, 스테인레스강의 경우는 6.0~7.0으로 경도의 중간가현저하다. 또한 질화층의 깊이는 철강 및 스테인레스강의 경우는 100μm이상을 나타낸다. 그림 3는 S15C에 대하여 플라즈마질화처리에 의하여 형성된 질화층의 조직의 예를 나타낸 것이다.

질화처리는, 일반적으로 철강이나 스테인레스강의 경우는 Fe-N계에 있어서의 3t형 Fe₃N 공석은 390℃이하에서도 형성되며, 고응력금속이나 Ni, Co기함재에서는 보다 고온에서의 처리가

그림 3 플라즈마질화처리에 의하여 형성된 질화층의 조직의 예: S15C

<table>
<thead>
<tr>
<th>자 동차</th>
<th>엔진</th>
<th>크레스크아프트, 캡사포트, 각종 기어 등</th>
</tr>
</thead>
<tbody>
<tr>
<td>금</td>
<td>형</td>
<td>압출용, 인넷용, 단조용, 프레스용, 래스트용, 분열합금용, 플레스틱성형용</td>
</tr>
<tr>
<td>공</td>
<td>구</td>
<td>비트, 헤드, 드릴 등</td>
</tr>
<tr>
<td>압 반</td>
<td>기</td>
<td>로울, 드라이브등</td>
</tr>
<tr>
<td>공 작 기 계</td>
<td></td>
<td>주축, 피니어, 기어 등</td>
</tr>
<tr>
<td>사출 성 형 기</td>
<td></td>
<td>사출성형용크류, 실린더, 프레스 등</td>
</tr>
<tr>
<td>기</td>
<td>타</td>
<td>유압기계부품, 선박용부품, 소결제, 주철 등</td>
</tr>
</tbody>
</table>

대한접학회지 14권 2호, 1996년 4월
표 1 플라즈마질화법과 중래의 절화법의 비교

<table>
<thead>
<tr>
<th>원리</th>
<th>플라즈마질화법</th>
<th>염용질화법</th>
<th>가스연결화법</th>
<th>가스절화법</th>
</tr>
</thead>
</table>
| | 진공로 내에서 glow 방전을 일으켜 \(N_2\), \(H_2\) 및 다른 가스를 단독 또는 혼합가스로 확장하여 질소를 확산시킨다. \(\text{NH}_3\)의 경우 \(2\text{NH}_3\rightarrow\text{N}_2+3\text{H}_2\) | \(\text{XCN}, \text{XCNCO}, \text{X}_2\text{CO}_2\) (\(X\) : 알킬기주로) 용액에서의 반응에 의한 \(N, C\)의 확산. \(\text{air}\) \(\text{2XCN+O}_2\rightarrow\text{2XCNO} \) 불연 \(\text{2XCNO}\rightarrow\text{CO}+2\text{N}_2\) \(2\text{CO}\rightarrow\text{C}+\text{CO}_2\) | \(\text{RX가스} 50\%\) \(\text{NH}_3\)가스 50\%의 분위 기중에서 \(N, C\)를 강하게 확산. \(2\text{NH}_3\rightarrow2\text{N}_2+3\text{H}_2\) \(2\text{CO}\rightarrow\text{C}+\text{CO}_2\) | \(\text{NH}_3\)가스분위기중에서 \(N\)을 확산시키며, \\
| | | | | 의 친절 소원시와 질화물을 생 | \\
| | | | | 성 \\
| | | | | \(2\text{NH}_3\rightarrow2\text{N}_2+3\text{H}_2\) |

<table>
<thead>
<tr>
<th>작용 강도</th>
<th>전장중</th>
<th>전장중</th>
<th>전장중</th>
<th>절화강</th>
</tr>
</thead>
<tbody>
<tr>
<td>전기기</td>
<td>온도</td>
<td>350~570°C (일반)</td>
<td>560~580°C</td>
<td>500~540°C</td>
</tr>
<tr>
<td>열원</td>
<td>15min~20h(일반)</td>
<td>15min~3h(일반)</td>
<td>15min~6h(일반)</td>
<td>40min~100h(일반)</td>
</tr>
</tbody>
</table>
| 제조 | \(\text{N}_2, \text{H}_2\) 질화성의 단독 또는 혼합가스 | \(\text{XCN}, \text{XCNCO}\) (\(X\) : 알킬기주로) | \(\text{RX가스}\) | \\
| | 대부분의 용이 | | | \\
| 관리 | 방전전압, 전류, 용액 | 솔트조성, 분석이 비교적 간단 | \(\text{NH}_3\)의 분해도, 노점, 보통 | \\
| 변형 | 극소 | 비교적 적다 | 약간 있다 |

적합하다. 또 분위기의 환원작용 때문에 수소가 10~50\% 정도 혼합되었는데, \(T\) 동과같이 수소취화를 나타내는 계료의 경우에는 순 \(N_2\) 중에서 향할 필요가 있다.

4.2 질화층의 해석

표 4에 탄소강, 탄소저합금강 및 절화강에 대하여 플라즈마질화, 가스연결화, 염용절화제라블 및 \(\text{NH}_3\)가스절화처리한 시료에 대한 XRD의 결과를 나타내었다. 플라즈마질화처리의 25\%\(N_2\)의 경우는 S15C, S45C, SCM3는 \(\gamma\) 단상을 나타내고 있으며, SACM1에서는 \(\gamma'\)와 \(\epsilon\)의 혼합상을 나타내고 있다. 그리고 80\%\(N_2\)의 경우는 S15C는 \(\gamma\) 단상인데, 그 외의 강조에서는 모두 \(\gamma'\)와 \(\epsilon\)의 혼합상을 나타내고 있다. 그리고 가스연결화의 경우는 \(\epsilon\)단상을

Journal of KWS, Vol. 14, No. 2, April, 1996
표 3 각종 금속제료의 플라즈마질화후의 표면경화 상태

<table>
<thead>
<tr>
<th>재료</th>
<th>처리조건</th>
<th>경도 (Hv)</th>
<th>경화충분 깊이 (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>표면경도 (H㎁)</td>
<td>모상경도 (H㎁)</td>
</tr>
<tr>
<td>비철함금</td>
<td>Ti</td>
<td>850</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>T6A14V</td>
<td>860</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>600</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>1020</td>
<td>280</td>
</tr>
<tr>
<td>철강</td>
<td>S15C</td>
<td>500×4×5×(N₂:H₂=4:1)</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>SCM440</td>
<td>500×4×5×(N₂:H₂=4:1)</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>SACM1</td>
<td>500×5×5×(N₂:H₂=1:3)</td>
<td>1200</td>
</tr>
<tr>
<td>스테인레스강</td>
<td>STS304</td>
<td>500×3×6×(N₂:H₂=1:1)</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>STS430</td>
<td>700×3×6×(N₂:H₂=1:1)</td>
<td>1170</td>
</tr>
<tr>
<td>Ni 함금</td>
<td>In-600</td>
<td>700×3×6×(N₂:H₂=1:1)</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>In-713C</td>
<td>830</td>
<td>390</td>
</tr>
<tr>
<td>Co기 함금</td>
<td>UMCo</td>
<td>650×3×6×(N₂:H₂=1:1)</td>
<td>1000</td>
</tr>
</tbody>
</table>

표 4 결화처리한 각종 강재의 표면 생성층에 대한 XRD 결과

<table>
<thead>
<tr>
<th>생성층</th>
<th>강재</th>
<th>플라즈마질화 25% N₂</th>
<th>플라즈마질화 80% N₂</th>
<th>가스연결화</th>
<th>엽육질화</th>
<th>질화 접화</th>
<th>NH₃ 가스 접화</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S15C</td>
<td>S45C</td>
<td>SCM3</td>
<td>SACM1</td>
<td>S15C</td>
<td>S45C</td>
<td>SCM3</td>
</tr>
<tr>
<td>σ-Fe(110)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>γ' - Fe₃N(200)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ε - Fe₄N(111)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ε - Fe₃N(101)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ε - Fe₃N(002)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ε - Fe₃N(100)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

나타내고 있다.

표 5는 XRD의 결과로부터 γ'과 ε 각 상의 적분 강도를 측정한 값을 나타낸 것이다. 이 결과에 의하면, 플라즈마질화의 25%N₂에서는 S15C, S45C, SCM3의 표면은 전부 100% γ' 상을 나타내고 있다. 플라즈마질화 80%N₂에서는 S15C는 100% γ' 상을 나타내고 있는데, S45C, SCM3, SACM1에서 는 γ'의 양이 88.1%에서 69.9%로 점차 감소하여 ε상이 증가한다. SACM1에 대하여 γ'의 양을 비교하면, 동일한 플라즈마질화 처리의 경우에도 N₂가스의 혼합비가 적은 경우가 γ'의 양이 많고, N₂가스의 혼합비가 큰 쪽은 ε의 양이 적은 반면 ε의 양이 상대적으로 증가하고 있다. 이들의 결과로부터 결화층의 질소의 농도는 NH₃가스질화>플라즈마질
표 5 철화처리한 강의 γ' 및 ε 각 상의 적분강도비

<table>
<thead>
<tr>
<th></th>
<th>$\gamma' (200)$ (mm3)</th>
<th>$\varepsilon (100)$ (mm3)</th>
<th>$\gamma' + \varepsilon$ (mm3)</th>
<th>$\gamma'/\gamma' + \varepsilon \times 100$ (%)</th>
<th>$\varepsilon /\gamma' + \varepsilon \times 100$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>플라즈마 절화 25% N$_2$ S15C</td>
<td>474</td>
<td>0</td>
<td>474</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>플라즈마 절화 25% N$_2$ S45C</td>
<td>363</td>
<td>0</td>
<td>363</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>플라즈마 절화 25% N$_2$ SCM3</td>
<td>371</td>
<td>0</td>
<td>371</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>플라즈마 절화 25% N$_2$ SACM1</td>
<td>304</td>
<td>66</td>
<td>370</td>
<td>82.2</td>
<td>17.8</td>
</tr>
<tr>
<td>플라즈마 절화 80% N$_2$ S15C</td>
<td>320</td>
<td>0</td>
<td>320</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>플라즈마 절화 25% N$_2$ S45C</td>
<td>333</td>
<td>45</td>
<td>378</td>
<td>88.1</td>
<td>11.9</td>
</tr>
<tr>
<td>플라즈마 절화 25% N$_2$ SCM3</td>
<td>321</td>
<td>74</td>
<td>395</td>
<td>81.3</td>
<td>18.7</td>
</tr>
<tr>
<td>플라즈마 절화 25% N$_2$ SACM1</td>
<td>520</td>
<td>224</td>
<td>744</td>
<td>69.9</td>
<td>30.1</td>
</tr>
<tr>
<td>가스연결환 S15C</td>
<td>0</td>
<td>220</td>
<td>220</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>염득침강 절화 S15C</td>
<td>0</td>
<td>188</td>
<td>188</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>NH$_3$가스 SACM1</td>
<td>286</td>
<td>182</td>
<td>468</td>
<td>61.1</td>
<td>38.9</td>
</tr>
</tbody>
</table>

표 6 각종 절화처리에 의한 SSOC의 입장시험 결과

<table>
<thead>
<tr>
<th></th>
<th>미처리</th>
<th>플라즈마절화 20% N$_2$</th>
<th>플라즈마절화 80% N$_2$</th>
<th>염득침강절화</th>
<th>가스연결화</th>
</tr>
</thead>
<tbody>
<tr>
<td>인장강도 kg/mm2</td>
<td>75.19</td>
<td>73.87</td>
<td>69.88</td>
<td>65.02</td>
<td>64.13</td>
</tr>
<tr>
<td>감소율 %</td>
<td>0</td>
<td>1.75</td>
<td>7.06</td>
<td>13.52</td>
<td>14.70</td>
</tr>
<tr>
<td>신율 %</td>
<td>34.28</td>
<td>23.14</td>
<td>21.14</td>
<td>13.42</td>
<td>11.42</td>
</tr>
<tr>
<td>감소율 %</td>
<td>0</td>
<td>32.49</td>
<td>38.33</td>
<td>60.85</td>
<td>66.68</td>
</tr>
<tr>
<td>R. A. %</td>
<td>53.3</td>
<td>21.97</td>
<td>15.97</td>
<td>6.50</td>
<td>6.50</td>
</tr>
<tr>
<td>감소율 %</td>
<td>0</td>
<td>58.78</td>
<td>70.03</td>
<td>87.80</td>
<td>87.80</td>
</tr>
</tbody>
</table>

화 (80% N$_2$) → 플라즈마절화 (25% N$_2$) 의 순으로 적어 냄는 경향을 보이고 있다. 그리고 플라즈마절화, 가스연결화, 염득침강절화에 대하여 γ'의 양을 비교하여 보면, 플라즈마절화에 비하여 가스연결화 및 염득침강절화의 경우가 인소의 이외에 반소도 동시에 표면으로부터 확산 정부하기 때문에 γ' 상의 생성이 억제되며, ε 상이 비교적 용이하게 생성되는 경향을 나타내고 있다.

4.3 강압성

플라즈마절화는, 전술한 바와 같이 표면절화층의 생성을 용이하게 조절할 수 있으며, 감소가스가 양적으로 적은 분위기에 있어서는 γ' 단상을 생성시키는 것도 가능하다. 그러나 다른 종류의 절화법의 경우에는 γ' 단상을 생성시키는 것은 불가능하다. γ' 상의 결정구조가 면성임방정 (FCC) 이기 때문에 일반적으로 인성이 풍부한 것으로 알려져 있다. 그러므로 종류의 절화법과 비교하여 인성이 개선이라는 관점에서 주목을 받고 있다. 그 해로서, SSOC에 대하여 플라즈마절화 및 종
그림 4 플라즈마 및 NH3 가스질화 처리한 SACM 1의 마찰거리와 마모량의 관계

래의 질화법에 의하여 처리된 인장시험의 결과를 미처리재의 경우도 포함하여 표 6에 나타내었다. 이 결과에 의하면, 마모된재와 비교하여 보았을 때 플라즈마질화처리의 경우는 금속에 대한 간소용이 적고, 절체처리에 의한 인장의 저하 가 거의 없으나, 종래법의 경우는 현저하게 인장이 저하하고 있는 것을 알 수 있다.

4.4 내마모성

플라즈마질화에 있어서, 각종 처리조건의 변화에 따라서 표면층은 화합물층의 경우

이, 중심과 그 조성과 내마모성의 변화에 대하여 종래의 질화법과 비교하여 보았다.

그림 4는 Ogoshi식 미모시험의 결과로서 마찰속도를 0.94m/sec로 일정하게 하고, 마찰거리를 100~600m로 변화시켜서 마찰거리와 마모량의 관계를 나타낸 것이다. 플라즈마질화처리에 의하여 내마모성이 현저하게 개선되어 있는 것을 알 수 있다. 그리고 질소가스의 혼합비가 높은 쪽이 낮은 쪽에 비하여 더욱 우수한 내마모성을 나타내고 있으며, 마찰거리가 증가하여도 마모량의 증가가 거의 발생하지 않는 것을 알 수 있다. S15C의 경우에는 호이도 거의 동일한 결과를 얻을 수 있었으며, 다른 질화법의 결과와 비교하였을 경우, 거의 동일하거나 우수한 내마모성을 나타내었다. 그리고 이 럘의 질화법에 따른 내마모성의 차이는

와의 양적인 관계에 따른 결과로도 동일한 차이에 의한 것으로 생각된다. 그림 5은 시판고 있는 중, 고

탄소강 및 중, 고탄소저항 금강의 19중을 사용하여 플라즈마질화처리한 후의 표면경도와 비(比)마모량의 관계를 미처리재의 경우와 비교하여 나타낸 것이다. 마모시험에는 Ogoshi식마모시험기를 사용하였으며, 절체처리에 의한 경도의 증가와 함께 내마모성이 현저하게 개선되는 것을 알 수 있다.

그림 5 시판 중, 고탄소강 및 그 저항강CORD 19중에 대한 플라즈마질화처리 후의 표면경도와 비마모량과의 관계
우에도 정화처리에 의하여 내마모성이 현저하게 증가하였으며, 전(全) 마찰속도에 있어서 거의 동등한 값을 나타내는 경향을 보인다. 또한 정화처리의 경우는 마찰속도에 대한 의존성도 크게 감소하는 경향을 나타내며, 특히 정화강의 경우에 는, 전마찰속도에 있어서 일정한 값을 유지하는 우수한 내마모성을 나타낸다.

4.5 피로강도

종래의 정화법은, 그 특성으로서 내마모성 및 내피로성이 우수한 표면정화법의 하나로 알려져 있다. 플라즈마 정화법은 전통적인 바와 같이, 많은 우수한 특성을 가지고 있으며, 특히 금속학적인 관점에서 정화형성층을 처리조건에 따라서 조절할 수 있다는 것을 드리라 한다. 그러므로 실제 플라즈마정화법을 각종 부품에 적용하는 경우에는 사용되는 부품의 부하(負荷) 성을 고려하여 그에 적합한 정화재료층을 얻는 처리조건을 선택할 필요가 있으며, 이에 따른 내피로성에 대하여 종래의 정화법의 경우와 비교검토하였다. 구조용강의 경우를 예로 들어, 각정세절에 플라즈마정화처리한 경우의 피로강도의 변화를 미처리제의 경우와 비교하여 그림 6 및 표 7에 나타내었다. 이 결과에 의하면, S15C, S45C, SCM3에 있어서는 확산층의 경도 및 모재 자체의 경도가 큰 순서로 피로강도가 증가하는 경향을 나타내며, 플라즈마정화처리에 의하여 현저하게 피로강도가 개선된다. 그리고 피로강도는 그 확산층의 경도 및 조재의 변형에 영향을 받는데, 그 이유는 a-Fe에 고용한 질소가 슬림을 지지하기 때문에라, 고용량이 많을수록 피로강도가 크다. 그리고 고용량에서 그 차가 현저하게 나타나는 것은, 경도가 상승한다는 것과 슬림을 따라서 석출하는 질소가 한층 더 슬림을 저지하는 효과를 조장하는 작용을 하기 때문이라고 생각한다.

종래의 정화법과 플라즈마정화처리에 의한 피로강도를 비교한 결과에 의하면, 어느 경우도 미처리제에 비하여 약 70%의 피로상승한계를 나타내는 우수한 피로강도를 보이고 있다. 그리고 처리방법의 차이에 따른 피로강도의 변화는 거의 없으며, 대체로 동일한 값을 나타낸다. 한편 정화강의 경우에는 플라즈마정화의 경우가 종래의 정화법에 비하여 약간 양호한 피로강도가 얻어지고는데 그 차이는 크지 않다.

플라즈마정화는 전통적인 바와 같이 가스결합으로 비교하여 절화중의 시료의 표면이 활성화되므로 정화반응이 비교적 활발하게 일어나게 되고, 따라서 침속도도 크게 증가한다. 그러므로 정화강의 경도분포에서도 나타나는 바와같이, 플라즈마정화에 의하면, NH₃가스결합처리의 약 1/3정도의 단시간처리로 NH₃가스결합처리의 경도가 동일한 피로강도를 얻을 수 있다.

5. 결언

강의 표면정화처리법의 하나인 플라즈마정화법

<table>
<thead>
<tr>
<th>제적</th>
<th>처리</th>
<th>피로한 (kg/mm²)</th>
<th>피로한 상승비</th>
</tr>
</thead>
<tbody>
<tr>
<td>S15C</td>
<td>미처리</td>
<td>24</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>소프트마크</td>
<td>39</td>
<td>1.63</td>
</tr>
<tr>
<td>S45C</td>
<td>미처리</td>
<td>28</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>소프트마크</td>
<td>43</td>
<td>1.54</td>
</tr>
<tr>
<td>SCM3</td>
<td>미처리</td>
<td>42</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>소프트마크</td>
<td>62</td>
<td>1.48</td>
</tr>
<tr>
<td>SACM</td>
<td>미처리</td>
<td>38</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>소프트마크</td>
<td>61</td>
<td>1.60</td>
</tr>
</tbody>
</table>

그림 6 플라즈마 정화처리한 각종 재질과 미처리제의 피로강도의 비교
플라즈마질화법에 의한 강의 표면개질

은 종래의 질화법과 비교하여 무공해, 성(省)에너지
지면에서 바꾸어가지 않아 변형도 작다고 하는 많은 우
수한 장점을 가지고 있는 처리방법으로서, 독일
및 일본등지에서는 이미 실용화되어 현재 공업적
으로 널리 사용되고 있다. 그리고 소재가 가지고
있는 재성질을 보다 고기능함 다기능화하는 재료
의 하이브리드화에 따른 경쟁력 관계로부터, 플라
즈마질화처리와 관련된 다각도의 연구의 진행 및
그 실용화에 대한 중요성의 확대가 점차 더 요구
되고 있다.

그리고 플라즈마방식에 의한 표면개질은 이미
실용화되어 있는 질화, 침판질화(Plasma soft-
nitriding), 침판뿐 아니라 보온화 및 침류(浸焼
또는 침형)법등도 활발하게 검토되고 있다. 그러
므로 플라즈마방식을 이용한 표면개질은 전술한
우수한 특성과 함께 확산원소와 모재의 적절한
조합에 의하여 새로운 기능을 가지는 표면개질층
을 다양하게 용이하게 만들 수 있는 처리법으로서
그 전망이 매우 밝다. 그러나 우리나라의 경우는,
본 방식에 의한 연구 및 실용화가 아직은 부족한
것으로 사료된다. 따라서, 금속제료의 표면개질
관련 분야에 종사하는 산업계의 관계자 및 연구자
들의 관심이 점차 더 요구된다.

참고 문헌
4. 赤澤ら: 鉄と鋼, 49-10 (1963), p. 1494
5. H. Bennek und O. Rudiger: Arch.
10. 喜多ら: 金属材料, 15-7 (1975), p. 26
12. 浦尾ら: 表面技術 (日本), 41-5 (1990), p. 566-569
15. 藤村ら: 日本金属学会誌, 42-10 (1978), p. 936
17. 山中久彦: "イオン窒化法", 日刊工業新聞社, 1984
18. 高橋ら: 日本金属学会誌, 40-7 (1978), p. 663
19. 高橋ら: 熱処理 (日本), 14-1 (1974), p. 15
24. 松田、中田、真喜志、木谷: 溶接学会論文集
25. 中田、真喜志、塚本、松田: 表面技術 (日本), 44-11 (1993), p. 944-949
26. 喜多: "大阪府立大学 学位論文", 1983