보수용접기술 기초

이 보영

An Introduction to Repair Welding Technology

Bo-Young Lee

1. 서 언

용접구조물에는 제작과정 중의 결함이나 사용 중의 과부하 또는 반복하중 등으로 인해 결함이나 손상이 발생할 수 있다. 이런 결함이나 손상을 제거하기 위해 실시하는 용접은 보수용접이라 한다. 보수용접은
- 생산과정 중의 마감용접,
- 불편한 부위에 대한 수정용접,
- 사용 중에 있는 구조물에 대한 보수용접으로 구분할 수 있다. 본 논문에서는 사용 중에 있는 구조물에 대한 보수용접기술에 관한 설명하기로 한다.

2. 구조물에 대한 보수용접

사용 중에 있는 구조물에서용접부나 모재부에 손상이 발생되면 먼저
1) 손상부위의 보수가 가능하기?
2) 현재 위치에서 보수가 가능한가 또는 분리해 내야 하는가?
3) 보수를 위해 어떤 기술과 시간이 소요되는가?
4) 구조물은 보수 후 어떤 사용 특성을 갖을 것인가?
5) 보수용접 이외에 다른 해결 방법이 있는가? 용접과 유사한 성공률을 갖고 용접보다 빠르게 그리고/또는 값싸게 해결할 방법이 있는가?

을 확인하여야 한다. 이를 확인 후 보수용접 할 것 을 결정하게 되면 보수용접을 하기 전에 다음과 같은 조치들이 수행되어야 한다:
- 결함이나 손상의 원인 도출.
- 실제 모재와/또는 용접재의 확인.
- 보수용접규정과 관련한 용접규격과 제약사의 검토 확인.
- 보수 계획서의 수립(보수수서 포함).

이런 조치들을 수행하기 위해서는 다음의 자료들이 확인되어야 한다:
1) 받주자는 누구인가(회사 및 부서)?
2) 어떤 설비/기계의 요소인가?
3) 부품명은 무엇인가?
4) 부품의 크기. 중량. 형태는 어떠한가?
5) 사용조건은 어떠했는가?
6) 사용시간은 얼마인가?
7) 결함/손상의 종류는 무엇인가?
8) 결함/손상의 위치는 어디인가?
9) 결함/손상의 범위는 어느 정도인가?
10) 결함/손상 부위의 모재의 두께는 얼마인가?
11) 결함/손상 부위의 모재의 종류는 무엇인가?
12) 결함/손상 부위의 모재 상태는 어떠한가?
13) 결함/손상 부위의 열처리 상태는 어떠한가?
14) 결함/손상부가 용접부인 경우 사용 용접법과 용접 재료 및 용접 조건 등.

2.1 결함이나 손상의 원인 도출

보수용접기술에 전에 손상의 원인을 확인해야 한다. 결함이나 손상의 발생원인을 규명하기 위해서는 각 재 질 별 발생할 수 있는 결함과 손상의 종류 및 발생 기구를 이해하고 있어야 한다. 또한 구조물의 사용 특성을 포함해 발생 손상의 종류와 원인도 이해하고 있어야 한다. 손상의 원인은 손상의 위치와 방향. 손상부위의 변형 상태. 손상의 크기. 파단면 분석 등과 함께 금속 조직 검사 등의 방법으로 확인한다.

자주 확인되는 손상의 원인에는
- 과부하
- 설계 잘못/계산 결함
- 재료의 잘못 사용 또는 재료 결함
- 부재의 열처리 결함
- 사공 결함(ISO5817 또는 ISO 10042의 품질 등급

Copyright (C) 2005 NuriMedia Co., Ltd.
기준 미달
동이 있다.
손상 시 생기는 파손의 종류는 다음과 같다:

- 연성파단
- 피로파단
- 취성파단
- 레플라 균열

결함 또는 손상의 원인을 알아야 보수 후에 동일한 손상이 발생하는 것을 방지할 수 있다.
손상의 원인확인 후의 조치는 다음과 같은 것들이 있다:

- 설계의 변경
- 모재 또는 용가체의 변경
- 용접 순서 또는 축층 순서의 변경
- 추가적인 기계가공 또는 덧살의 가공.

2.2 모재와 용가체

2.2.1 모재
구조물에 사용된 설계 모재를 완전히 규명할 수 없다면 화학성분 분석을 실시해야 한다. 항복응력이 355 MPa 이상인 경질립미세화강의 경우에는 경질립미세화 원소(V, Ti, Nb, B 등)에 의한해야 한다. 또한 제작 현장에서 오래된 구조물의 경우에는 소재를 확인할 때 N, P, S 함량을 확인해야 한다.

모재의 기계적 성질을 보려 경우에는 시험판을 채취하여 다음의 물성을 확인해야 한다:

- 인장강도
- 항복강도
- 연성율
- 인성(충격인성)
- 단면수축률.

또한 필요한 경우에는 재료의 조직, 결함이나 손상의 위치를 확인하고 열화 정도(가온에서 사용되는 구조물의 경우)를 확인하기 위한 금속조직검사를 해야 한다.

2.2.2 용가체
화학성분분석 등을 통해 사용된 용가체의 종류를 확인해야 한다. 보수유럽에 사용하는 용가체는 높은 연성율(≥3%)을 가지어야 한다. 특히 루트유럽 시에의 모재보다 낮은 항복강도를 갖는 용가체를 사용하는 것이 바람직하다. 표면층의 덧살을 제거할 경우에도 이런 용가체를 사용해야 한다.

2.3 용융규격과 계약서
보수유럽은 용융규격과는 계약조항의 규정에 따라 수행해야 한다. 구조물 제작 시의 품질요건과 허용공차 요건을 만족해야 한다. 보수유럽집지는 공인검사현이나 계약자의 허가를 받아야 하며, 이들에 따라 이들의 임의에 실시해야 한다. 보수유럽 후의 시험에 적어도 최초의 구조물 제작 시 실시한 시험내용들이 포함되어야 한다.

2.4 보수 계획
보수계획은 준비되어야 하며, 경우에 따라 공사 또는 검사기관의 승인을 받아야 하는 때도 있다. 보수계획은 처음의 용융계획과 거의 유사하다.

보수계획에는 다음과 같은 사항들이 포함되어야 한다:

- 안전 사항
- 설계
- 재료의 종류
- 용가체
- 보수절차시방서(시방과 절차)
- 용접순서 시험
- 보수절차 시험
- 보수순서(충갑기와 용접순서)
- 허용 수축량
- 필요한 경우 열처리(온도, 유지시간, 가열 및 냉각 속도)
- 용접후처리(해머링, 기계가공, 연삭)
- 시험방법(시험 납작과 냉각)
- 보수유럽의 검사 및 감독

2.5 보수유럽절차
보수유럽의 일반적인 절차는 다음과 같다.

결합확인
↓
원인분석
↓
결합제거
↓
결합제거상태 확인
↓
용접 용가공
↓
예열
↓
3. 보수용접 시의 일반적 주의사항

보수용접과 생산용접의 차이는 용접부에 발생하는 구속도의 차이, 후처리(열처리 포함) 가능성의 유무, 용접자의 제한 등을 들 수 있다. 특히 구속도의 차이로 인해 보수용접부에는 절연용접이 최대로 발생할 수가 있다. 예로서 자립 80~100mm, 두께 9~20mm의 원형 patch 용접에서 용접부에 검선 및 밸본 방향의 최대 응력이 발생하는 것으로 알려져 있다. 이로 인해 용접부의 조립조건이나 용접순서가 생산용접의 경우와 다르게 되며 용접부의 형상도 다르게 된다.

구조물 벽에 원형의 판재를 교체하는 patch welding을 실시할 경우에는 patch 판의 크기를 필요한 최소 크기보다 충분히 크게 하는 것이 바람직하다. 이는 작업을 용이하게 하며 응력집중을 피할 수 있기 때문이며, 또한 가능하면 링대기 이봉 받은 접지는 형태의 접착제용접을 활용하여도 바람직하다. 이를 위해서는 덧판의 지름을 구멍의 지름보다 두께의 4배 정도 더 크게 만들어 안과 밖을 펼쳐 용접하는 것이 일반적이다. 이럴 경우 접착용접을 낮추고, 중열방수위험을 낮추며 링대접합 작업을 용이하게 하며 비용을 컀게 할 수 있는 장점이 있다. 접착제용접을 적용할 수 없는 원형 patch 용접에서는 용접 시 원형 접착선의 한쪽이 자유롭게 수축될 수 있게 조치하는 것이 필요하다. 즉, 원주 이봉을 반으로 구분하여 한 쪽을 완전히 용접한 다음에 다른 한 쪽을 용접하는 방법이며 용접순서는 휘회법(back-step welding)을 사용한다. 이를 위한 용접순서는 다음과 그림 1과 같다.

원형이 아닌 사각 판재를 patch 용접할 경우에는 용접점합방식을 예방하고, 응력을 낮게 하기 위해 모서리를 원형(R≥100mm)으로 설계해야 한다. 그림 1-a 참조. 그림 2에는 원통형 반응기의 외벽에 설치한 patch 용접부의 모서리에서 발생한 구조의 모습이 주어져 있다. 관통균열이 원측 상단의 모서리 용접 비드 끝부분의 연결부위에 발생되어 있는 모습이다. 그림 3에 주의할 이 부분의 응력제한 결과 모서리 용접부에서 가장 높은 응력이 작용하고 있음을 확인할 수 있다.

구조물의 형상에 따라 그림 4와 같이 2개의 용접선을 연장하여 보수용접하는 방법도 사용된다. 시공 방법은 다음과 같다: 1번째와 2번째 이봉을 조립하여 약하게 가정한 다음 1번째 이봉을 완전히 용접한다. 수축용접 때문에 2번째 이봉의 가정 부분이 터져야 한다.

그림 다음 2번째 이봉을 끌까지 용접한다. 이 용접시 발생하는 수축응력을 받아 줄 수 있는 길이는 적어도 두께의 40배 정도가 된다. 그런 다음 3번째와 4번째 이봉을 차례로 용접한다. 용접이용의 길이가 모서리 두께의 20배 이상인 경우 모든 이봉의 용접순서는 후퇴법을
4. 결 언

보수용접 방법을 도출하기 위해 필요한 내용과 조치 사항 및 방법에 관해 간략하게 설명하였다. 그러나 설계 구조물에 발생한 결함이나 손상을 제거하기 위한 보수용접기술을 찾기 위해서는 사용된 로제의 특성과 구조물의 사용 특성 및 용접기술에 관한 포괄적인 지식이 필요하며 이를 모두 갖추기가 쉽지 않다. 따라서 올바른 보수용접 방법을 도출하기 위해서는 충분한 경험이 필요하다. 보통의 경우 이런 경험을 직접 갖추기 위한 방법이 없기 때문에 보수용접에 관한 자료를 활용하는 것이 바람직하다. 발전설비와 장치산업분야에서의 50가지의 다양한 보수용접방법을 포괄 설명하고 있는 자료가 있어야 이런 자료를 활용하면 독자의 현장문제 해결을 위해 도움이 될 수 있을 것으로 판단된다.

참 고 문 헌

1. 대한용접학회 : 용접전문기술자 교육교재, 시공편, 대한용접학회,(1998)
3. 澤辻 鉄紀: 補修溶接施工指針, (社)日本溶接協会 化学機械溶接研究委員会,補修溶接信頼性小委員会(1987.7)

이보영(李普榮)
1953년생
한국항공대학교
철강재용접, 보수용접, 용접부 손상해석
e-mail : bylee@mail.hau.ac.kr