1. D.S. Correia, C.V. Goncalves, S.S.. da Cunha Jr, and V.A. Ferraresi, Comparison between genetic algorithms and response surface methodology in GMAW welding optimization,
J. Mater. Process Tech. 160 (2005) 70–76.
[CROSSREF]
2. P.K. Palani and N. Murugan, Optimization of weld bead geometry for stainless steel claddings deposited by FCAW,
J. Mater. Process Tech. 190 (2007) 291–299.
[CROSSREF]
3. C. Doumanidis and Y.M. Kwak, Multivariable adaptive control of the bead profile geometry in gas metal arc welding with thermal scanning,
Int. J. Pres. Ves. Pip. 79 (2002) 251–262.
[CROSSREF]
4. T.C. Nguyen, D.C. Weckman, D.A. Johnson, and H.W. Kerr, High speed fusion weld bead defects,
Sci. Technol. Weld. Joi. 11(6) (2006) 618–633.
[CROSSREF]
5. T.C. Nguyen, D.C. Weckman, and D.A. Johnson, The discontinuous weld bead defect in high-speed gas metal arc welds, Weld. J. 86 (2007) 360–3725.
6. E. Karadeniz, U. Ozsarac, and C. Yildiz, The effect of process parameters on penetration in gas metal arc welding processes,
Mater. Des. 28 (2007) 649–656.
[CROSSREF]
7. R. Choteborsky, M. Navratilova, and P. Hrabe, Effects of MIG process parameters on the geometry and dilution of the bead in the automatic surfacing,
Res. Agr. Eng. 57(2) (2011) 56–62.
[CROSSREF]
8. P. Sreeraj, T. Kannan, and S. Maji, Optimization of weld bead geometry for stainless steel cladding deposited by GMAW, Am. J. Eng. Res. 02(05) (2013) 178–187.
9. P. Sreeraj, T. Kannan, and S. Maji, Prediction and optimization of weld bead geometry in gas metal arc welding process using RSM and fmincon,
J. Mech. Eng. Res. 5(8) (2013) 154–165.
[CROSSREF]
10. P. Sreeraj, T. Kannan, and S. Maji, Prediction and optimization of stainless steel cladding deposited by GMAW process using response surface methodology ANN and PSO, Int. J. Eng. Sci. 3(5) (2013) 30–41.
11. P. Sreeraj, T. Kannan, and S. Maji, Optimization of GMAW process parameters using particle swarm optimization,
ISRN Metall. (2013) 1–10.
[CROSSREF] [PDF]
12. I.S. Kim, K.J. Son, Y.S. Yang, and P.K.D.V. Yaragada, Sensitivity analysis for process parameters in GMA welding processes using a factorial design method,
Int. J. Mach. Tool. Manu. 43 (2003) 763–769.
[CROSSREF]
13. I. Boiko and D. Avisans, Study of shielding gases for MAG welding, Mater. Phys. Mech. 16 (2013) 126–134.
14. R.H. Myers, D.C. Montgomery, and C.M. Anderson-Cook. Response Surface Methodology - Process and product optimization using designed experiments. (2009), Hoboken, New Jersey: John Wiley & Sons; p. 705
15. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry,
Talanta. 76 (2008) 965–977.
[CROSSREF] [PUBMED]
16. O. Popovic, R. Prokic-Cvetkovic, M. Burzic, and Z. Milutinovic, The effect of heat input on the weld metal toughness of surface welded joint, 14thInt. Res./Exp. Conf., TMT 2010. 11-18. (September., 2010) 61–64.
17. C.L. Jennery and A. O’Brien. Welding Handbook - Welding Science and Technology. (2001), Miami, Florida: American Welding Society; 985 (54)
18. A.I. Khuri and Mukhopadhyay. S, Response surface methodology,
WIREs Comp. Stat. 2 (2012) 128–149.
[CROSSREF] [PDF]