1. D.R. Askeland and W. J. Wright, Essentials of Materials Science and Engineering. 4th ed. CENGAGE, Boston, USA(2019) 245–247.
2. E. Patrick and M. Sharp, Joining Aluminum Auto Body Structure,
SAE Technical Paper. 920282(1992) https://doi.org/10.4271/920282
[CROSSREF]
3. J. Cho, Weldability Increase of Aluminum by Variable Polarity Arc,
J. Weld. Join. 32(1) (2014) 108–111. https://doi.org/10.5781/JWJ.2014.32.1.108
[CROSSREF]
4. J. Cho, J. J. Lee, and S. H. Bae, Heat input analysis of variable polarity arc welding of aluminum,
Int. J. Adv. Manuf. Technol. 81 (2015) 1273–1280. https://doi.org/10.1007/s00170-015-7292-y
[CROSSREF]
5. H. Jeong, K. Park, S. Baek, and J. Cho, Thermal effi-ciency decision of variable polarity aluminum arc weld-ing through molten pool analysis,
Int. J. Heat. Mass Transfer. 138 (2019) 729–737. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.089
[CROSSREF]
6. R.S. Florea, D. J. Bammann, A. Yeldell, K. N. Solanki, and Y. Hammi, Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy,
Mater. Des. 45 (2013) 456–465. https://doi.org/10.1016/j.matdes.2012.08.053
[CROSSREF]
7. A. Gean, S. A. Westgate, J. C. Kucza, and J. C. Ehrstrom, Static and Fatigue Behavior of Spot-Welded 51 82-0 Aluminum Alloy Sheet, Weld. J. 78(3) (1999) 80s–86s.
8. K.V. Jata, K. K. Sankara, and J. J. Ruschau, Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451,
Metall. Mater. Trans. A. 31A (2000) 2181–2192. https://doi.org/10.1007/s11661-000-0136-9
[CROSSREF]
9. M.N. Ilman, . Kusmono, and P. T. Iswanto, Fatigue crack growth rate behaviour of friction-stir aluminium alloy AA2024-T3 welds under transient thermal tensioning,
Mater. Des. 50 (2013) 235–243. https://doi.org/10.1016/j.matdes.2013.02.081
[CROSSREF]
10. G. D'Urso, C. Giardini, S. Lorenzi, and T. Pastore, Fatigue crack growth in the welding nugget of FSW joints of a 6060 aluminum alloy,
J. Mater. Process. Technol. 214(10) (2014) 2075–2084. https://doi.org/10.1016/j.jmatprotec.2014.01.013
[CROSSREF]
11. D.G. Moghadam and K. Farhangdoost, Influence of welding parameters on fracture toughness and fatigue crack growth rate in friction stir welded nugget of 2024-T351 aluminum alloy joints,
Trans. Nonferr. Met. Soc. China. 26(10) (2016) 2567–2585. https://doi.org/10.1016/S1003-6326(16)64383-2
[CROSSREF]
12. D.A. Wang and C. H. Chen, Fatigue lives of friction stir spot welds in aluminum 6061-T6 sheets,
J. Mater. Process. Technol. 209(1) (2009) 367–375. https://doi.org/10.1016/j.jmatprotec.2008.02.008
[CROSSREF]
13. YuE. Ma, Z. C. Xia, R. R. Jiang, and Li. WenYa, Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminum–lithium alloy joints,
Eng. Fract. Mech. 114 (2013) 1–11. https://doi.org/10.1016/j.engfracmech.2013.10.010
[CROSSREF]
14. P.C. Lin, J. Pan, and T. Pan, Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets. Part 2:Welds made by a flat tool,
Int. J. Fatigue. 30(1) (2008) 90–105. https://doi.org/10.1016/j.ijfatigue.2007.02.017
[CROSSREF]
15. H.R. Ghazvinloo, A. Honarbakhsh-Raouf, and N. Shadfar, Effect of Arc Voltage, Welding Current and Welding Speed on Fatigue Life, Impact Energy and Bead Penetration of AA6061 Joints Produced by Robotic MIG Welding,
Ind. J. Sci. Tech. 3(2) (2010) 156–162.
[CROSSREF]
16. Y. Gori and R. P. Verma, Experimental Fatigue Life Estimation of AA5083 Aluminium Alloys Welded by Two Welding Processes- Gas Metal Arc (GMA) Welding and Friction Stir Welding (FSW), J. Graph. Era. Univ. 5(1) (2017) 10–15.
17. J.da. Silva, J. M. Costa, A. Loureiro, and J. M. Ferreira, Fatigue behaviour of AA6082-T6 MIG welded butt joints improved by friction stir processing,
Materi. Des. 51 (2013) 315–322. https://doi.org/10.1016/j.matdes.2013.04.026
[CROSSREF]
18. C. Zhang, M. Gao, and X. Zeng, Effect of micro-structural characteristics on high cycle fatigue proper-ties of laser-arc hybrid welded AA6082 aluminum al-loy,
J. Mater. Process. Technol. 2(31) (2016) 479–487. https://doi.org/10.1016/j.jmatprotec.2016.01.019
[CROSSREF]
19. Y. Qiao, H. Zhang, L. Zhao, and Q.i. Feng, Fatigue Crack Growth Properties of AA 5754 Aluminum Alloy Gas Tungsten Arc Welding and Friction Stir Welding Joints,
J. Mater. Eng. Perform. 29 (2020) 2113–2124. https://doi.org/10.1007/s11665-020-04739-4
[CROSSREF]
20. J.M. Kuk, K. C. Jang, D. G. Lee, and I. S. Kim, Effects of temperature and shielding gas mixture on fatigue life of 5083 aluminum alloy,
J. Mater. Process. Technol. 155–156. 30 (2004) 1408–1414. https://doi.org/10.1016/j.jmatprotec.2004.04.117
[CROSSREF]
21. P. Livieri and P. lazzarin, Fatigue Strength of Steel and Aluminium Welded Joints based on Generalised Stress Intensity Factors and Local Strain Energy Values,
Int. J. Frac. 133 (2005) 247–276. https://doi.org/10.1007/s10704-005-4043-3
[CROSSREF]
22. S.W. Han, H. J. Lee, and S. R. Lee, Fatigue Strength Evaluation of Butt Welded Aluminum Alloy Component for Railway Vehicles, Procssing of Spring Conference of Korean Society for Railway. (2020) 242–249.
23. N.L. Person, Fatigue of Aluminum Alloy Welded Joints, Weld. J. 50(2) (1971) 77s–87s.