1. S. Kodama, Y. Ishida, S. Furusako, M. Saito, Y. Miyazaki, and T. Nose, Arc Welding Technology for Automotive Steel Sheets, Nippon Steel Technical Report. 103 (2013) 83–90.
2. Y. Mukai, A. Nishimura, A. Nakajima, and K. Oku, CO
2 welding of galvanized steel,
Weld. Int. 4(2) (1990) 123–127.
[CROSSREF]
3. M. Uchihara, Joining technologies for automotive, steel sheets,
Weld. Int. 25(04) (2011) 249–259.
[CROSSREF]
4. K. Yasuda, Avoidance of blowhole in, arc welding of galvanized steel sheets, In 5th International Symposium of JWS. (1990)
5. M. J. Kang and S. Rhee, The statistical models for estimating the amount of spatter in the short circuit transfer mode of GMAW, Weld. J. 80(1) (2001) 1–8.
6. S. K. Kang, H. S. Moon, and S. J. Na, A study on determining arc stability using weight of spatter, J. Korean Weld. Join. Soc. 15(6) (1997) 527–534.
7. C. S. Wu, J. Q. Gao, and J. K. Hu, Real-time sensing and monitoring in robotic gas metal arc welding,
Meas. Sci. Technol. 18(1) (2006) 303–310.
[CROSSREF]
8. Z. Zhang, X. Chen, H. Chen, J. Zhong, and S. Chen, Online welding quality monitoring based on feature extraction of arc voltage signal,
Int. J. Adv. Manuf. Technol. 70(9-12) (2014) 1661–1671.
[CROSSREF]
9. S. J. Na and H. S. Moon, Signal processing algorithm for analysis of welding phenomena, J. Korean Weld. Join. Soc. 14(4) (1996) 24–32.
10. J. S. Sin, J. W. Kim, and S. J. Na, A Study on Monitoring of Welding Waveforms in Gas Metal Arc Welding, J. Korean Weld. Join. 9(03) (1991) 34–40.
12. L. Perez and J. Wang, The effectiveness of data augmentation in image classification using deep learning, arXiv preprint. arXiv:1712.04621(2017)
13. Y. Tang, Deep learning using linear support vector machines, arXiv preprint arXiv:1306.0239. (2013)
14. K. Sohn, H. Lee, and X. Yan, Learning structured output representation using deep conditional generative models, Adv. Neural Inf. Process. Syst. (2015) 3483–3491.
15. G. Panchal, A. Ganatra, Y. P. Kosta, and D. Panchal, Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers,
Int. J. Computer Theory Eng. 3(2) (2011) 332–337.
[CROSSREF]
16. S. Ding, C. Su, and J. Yu, An optimizing BP neural network algorithm based on genetic algorithm,
Artif. Intell. Rev. 36(2) (2011) 153–162.
[CROSSREF]
17. F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K S. Tam, Tuning of the structure and parameters of a neural network using an improved genetic algorithm,
IEEE Trans. Neural Netw. 14(1) (2003) 79–88.
[CROSSREF] [PUBMED]
18. S. Jang and B. Yoon, Artificial Intelligence:A Comparative Study on Real - number Processing Method in Genetic Algorithms, Korea Inf. Process. Soc. 5(2) (1998) 361–371.
19. L. N. Smith, A disciplined approach to neural network hyper-parameters: Part 1- learning rate, batch size, momentum, and weight decay, arXiv preprint arXiv:1803.09820. (2018)
20. J. Wroblewski, Finding minimal reducts using genetic algorithms, In Proccedings of the Second Annual Join Conference on Infromation Science. 2 (1995) 186–189.
21. D. J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, In IJCAI. 89 (1989) 762–767.