1. M. Kang, W. S. Choi, and S. Kang, Ultrasonic and Laser Welding Technologies on Al/Cu Dissimilar Materials for the Lithium-Ion Battery Cell or Module Manufacturing,
J. Weld. Join. 37(2) (2019) 52–59.
https://doi.org/10.5781/JWJ.2019.37.2.8
[CROSSREF]
3. U. Reisgen, S. Olschok, and S. Jakobs, Laser beam welding in vacuum of thick plate structural steel, in International Congress on Applications of Lasers &Electro-Optics,
Laser Inst. America, City. (2013) 341–350.
https://doi.org/10.2351/1.5062897
[CROSSREF]
8. S. Yang, J. Wang, B. Carlson, and J. Zhang, Vacuum- assisted laser welding of zinc-coated steels in a gap-free lap joint configuration, Weld. J. 92(7) (2013) 197–204.
9. C. Börner, T. Krüssel, and K. Dilger, Process charac- teristics of laser beam welding at reduced ambient pressure, in High-Power Laser Materials Processing, Lasers, Beam Delivery, Diagnostics, and Applications II,
International Society for Optics and Photonics, San Diego. (2013) 86030M.
https://doi.org/10.1117/12.2003858
[CROSSREF]
10. U. Reisgen, S. Olscho, and S. Longerich, Laser beam welding in vacuum-a process variation in comparison with electron beam welding, in International Congress on Applications of Lasers &Electro-Optics,
Laser Institute of America, Anaheim. (2010) 638–647.
https://doi.org/10.2351/1.5062093
[CROSSREF]
11. J. Elmer, J. Vaja, and H. Carlton, The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercially pure titanium and nickel, Weld. J. 95 (2016) 419–430.
13. S. Katayama, Y. Abe, R. Ido, M. Mizutani, and Y. Kawahito, Deep penetration welding with high power disk lasers in low vacuum, in International Congress on Applications of Lasers &Electro-Optics,
Laser Institute of America, City?? (2011) 669–678.
https://doi.org/10.2351/1.5062308
[CROSSREF]
14. X. Han, X. Tang, T. Wang, C. Shao, F. Lu, and H. Cui, Role of ambient pressure in keyhole dynamics based on beam transmission path method for laser welding on Al alloy,
Int. J. Adv. Manuf. Technol. 99(5-8) (2018) 1639–1651.
https://doi.org/10.1007/s00170-018-2592-7
[CROSSREF]
16. C. Börner, K. Dilger, V. Rominger, T. Harrer, T. Krüssel, and T. Löwer, Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser, in International Congress on Applications of Lasers &Electro-Optics,
Laser Institute of America, Orlando. (2011) 621–629.
https://doi.org/10.2351/1.5062302
[CROSSREF]
17. A. Youhei, K. Yousuke, N. Hiroshi, N. Koji, M. Masami, and K. Seiji, Effect of reduced pressure atmosphere on weld geometry in partial penetration laser welding of stainless steel and aluminium alloy with high power and high brightness laser,
Sci. Technol. Weld. Join. 19(4) (2014) 324–332.
https://doi.org/10.1179/1362171813y.0000000182
[CROSSREF]
18. V. Rominger, P. Berger, and H. Hügel, Effects of reduced ambient pressure on spattering during the laser beam welding of mild steel,
J. Laser Appl. 31(4) (2019) 042016.
https://doi.org/10.2351/1.5007186
[CROSSREF]
22. P. Shcheglov, Study of vapour-plasma plume during high power fiber laser beam influence on metals, Bundesanstalt für Materialforschung und-prüfung (BAM). (2012)
23. Y. Cheng, X. Jin, S. Li, and L. Zeng, Fresnel absorption and inverse bremsstrahlung absorption in an actual 3D keyhole during deep penetration CO2 laser welding of aluminum 6016,
Opt. Laser Technol. 44(5) (2012) 1426–1436.
https://doi.org/10.1016/j.optlastec.2011.12.024
[CROSSREF]
24. Y. Kawahito, K. Kinoshita, N. Matsumoto, M. Mizutani, and S. Katayama, Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser,
Sci. Technol. Weld. Join. 13(8) (2008) 749–753.
https://doi.org/10.1179/136217108X356971
[CROSSREF]
27. G. Peng, L. Li, J. Wang, H. Xia, S. Meng, and J. Gong, Effect of subatmospheric pressures on weld formation and mechanical properties during disk laser welding of 5A06 aluminium alloy,
J. Mater. Process. Technol. 277 (2020) 116457.
https://doi.org/10.1016/j.jmatprotec.2019.116457
[CROSSREF]
34. Uwe. Reisgen, Simon. Olschok, Niklas. Holtum, and J. Stefan, Laser beam welding in mobile vacuum, Pro- ceedings of the Lasers in Manufacturing Conference (LIM2017), Munich, Germany. (2017)
35. Y. Luo, X. Tang, S. Deng, F. Lu, Q. Chen, and H. Cui, Dynamic coupling between molten pool and metallic vapor ejection for fiber laser welding under subat- mospheric pressure,
Journal of Materials Processing Technology. 229 (2016) 431–438.
https://doi.org/10.1016/j.jmatprotec.2015.09.048
[CROSSREF]
38. J. Ning, S. J. Na, L. J. Zhang, X. Wang, J. Long, and W. I. Cho, Improving thermal efficiency and stability of laser welding process for magnesium alloy by combining power modulation and subatmospheric pressure environment,
J. Magnesium Alloys. (2021)
https://doi.org/10.1016/j.jma.2021.02.005
[CROSSREF]
39. S. Pang, K. Hirano, R. Fabbro, and T. Jiang, Explanation of penetration depth variation during laser welding under variable ambient pressure,
J. Laser Appl. 27(2) (2015) 022007.
https://doi.org/10.2351/1.4913455
[CROSSREF]