1. H. Saariluoma, A. Piiroinen, A. Unt, J. Hakanen, T. Rautava, and A. Salminen, Overview of optical digital measuring challenges and technologies in laser welded components in EV battery module design and manufacturing,
Batteries. 6(3) (2020) 47.
https://doi.org/10.3390/batteries6030047
[CROSSREF]
3. M. Kang, W. S. Choi, and S. Kang, Ultrasonic and laser welding technologies on Al/Cu dissimilar materials for the lithium-ion battery cell or module manufacturing,
J. Weld. Join. 37(2) (2019) 52–59.
https://doi.org/10.5781/JWJ.2019.37.2.8
[CROSSREF]
6. S. Katayama, T. Takemoto, and A. Matsunawa, Effect of pulse shape on melting characteristics in pulsed laser spot welding, Proceeding of ICALEO'. 95 (1995) 846–855.
7. S. Fujinaga, H. Takenaka, T. Narikiyo, S. Katayama, and A. Matsunawa, Direct observation of keyhole behaviour during pulse modulated high power Nd:YAG laser irradiation,
J. Phys. D:Appl. Phys. 33(5) (2000) 492–497.
https://doi.org/10.1088/0022-3727/33/5/304
[CROSSREF]
9. J. Yang, L. Chen, S. Gong, and X. Li, Study on the surface treatment for controlling the aluminum-lithium alloy weld porosity of laser welding,
PICALO'. 08 (2008) 499.
https://doi.org/10.2351/1.5057065
[CROSSREF]
16. T. Sun, P. Franciosa, M. Sokolov, and D. Ceglarek, Challenges and opportunities in laser welding of 6xxx high strength aluminum extrusions in automotive battery tray construction,
Procedia CIRP. 94 (2020) 565–570.
https://doi.org/10.1016/j.procir.2020.09.076
[CROSSREF]
33. P. Schmidt, M. Schweier, and M. Zaeh, Joining of lithium-ion batterys using laser beam welding:Electrical losses of welded aluminum and copper joints,
ICALEO '. 12 (2012) 915–923.
https://doi.org/10.2351/1.5062563
[CROSSREF]
35. S. Lee, H. Nakamura, Y. Kawahito, and S. Katayama, Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets,
Sci. Technol. Weld. Join. 19(2) (2014) 111–118.
https://doi.org/10.1179/1362171813Y.0000000168
[CROSSREF]
38. A. Fortunato and A. Ascari, Laser welding of thin copper and aluminum sheets:Feasibility and challenges in continuous wave welding of dissimilar metals,
Lasers Manuf. Mater. Process. 6(2) (2019) 136–157.
https://doi.org/10.1007/s40516-019-00085-z
[CROSSREF]
39. V. Dimatteo, A. Ascari, and A. Fortunato, Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al):Process optimization and characterization,
J. Manuf. Process. 44 (2019) 158–165.
https://doi.org/10.1016/j.jmapro.2019.06.002
[CROSSREF]
47. V. Dimatteo, A. Ascari, E. Liverani, and A. Fortunato, Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing,
Opt. Laser Technol. 145 (2022) 107495.
https://doi.org/10.1016/j.optlastec.2021.107495
[CROSSREF]
50. W. Lai, S. Sung, J. Pan, Y. Guo, and X. Su, Failure mode and fatigue behavior of dissimilar laser welds in lap shear specimens of aluminum and copper sheets,
SAE Int. J. Mater. Manf. 7(3) (2014) 706–710.
https://doi.org/10.4271/2014-01-1986
[CROSSREF]