1. I. Chang, Y. Cho, H. Park, and D. So, Importance of fundamental manufacturing technology in the automotive industry and the state of the art welding and joining technology,
J. Weld. Join. 34 (2016) 21–25.
http://dx.doi.org/10.5781/JWJ.2016.34.1.21
[CROSSREF]
2. G. Michalos, S. Makris, N. Papakostas, D. Mourtzis, and G. Chryssolouris, Automotive assembly technologies review:challenges and outlook for a flexible and adaptive approach,
CIRO J. Manuf. Sci. Technol. 2 (2010) 81–91.
https://doi.org/10.1016/j.cirpj.2009.12.001
[CROSSREF]
5. H. W. Lee, J. Yu, G. G. Kim, Y. M. Kim, I. Hwang, S. H. Lee, and D. Y. Kim, Convolutional neural network model for the prediction of back-bead occurrence in GMA root pass welding of V-groove butt joint,
J. Weld. Join. 39 (2021) 463–470.
https://doi.org/10.5781/JWJ.2021.39.5.1
[CROSSREF]
6. H. You, M. Kang, S. Yi, S. Hyun, and C. Kim, Modeling of laser welds using machine learning algorithm Part II:Geometry and mechanical behaviors of laser overlap welded high strength steel sheets,
J. Weld. Join. 39 (2021) 36–44.
https://doi.org/10.5781/JWJ.2021.39.1.4
[CROSSREF]
7. K. Lee, S. Kang, M. Kang, S. Yi, and C. Kim, Estimation of Al/Cu laser weld penetration in photodiode signals using deep neural network classification,
J. Laser. Appl. 33 (2021)
https://doi.org/10.2351/7.0000506
[CROSSREF]
9. T. Schromm, F. Diewald, and C. Grosse, An attempt to detect anomalies in car body parts using machine learning algorithms,
Proceedings of the 9th Conference on Industrial Computed Tomography (iCT 2019) Padova, Italy. (2019)
https://doi.org/10.1016/j.mfglet.2021.09.006
[CROSSREF]
10. M. Meiners, M. Kuhn, and J. Franke, Manufacturing process curve monitoring with deep learning,
Manuf. Lett. 30 (2021) 15–18.
[CROSSREF]
13. Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen, and J. Wang, Product-based neural networks for user response prediction,
2016 IEEE 16th International Conference on Data Mining (ICDM) Barcelona, Spain. (2016) 1149–1154.
[CROSSREF]
14. V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, In International Conference on Machine Learning, Haifa, Israel. (2010)
16. S. Luo, X. Ma, J. Xu, M. Li, and L. Cao, Deep learning based monitoring of spatter behavior by the acoustic signal in selective laser melting,
Sensors (Basel). 21 (2021)
https://doi.org/10.3390/s21217179
[CROSSREF]