1. D. H. Ko, Y. I. Park, and Y. T. Shin, Pitting Corrosion Characteristic Depending on Welding Pass and Heat Input of GTA Weldment on Superaustenitic Stainless Steel(UNS S32654),
J. Weld. Join. 38(6) (2020) 528–534.
https://doi.org/10.5781/JWJ.2020.38.6.2
[CROSSREF]
2. J. Y. Jeong, M. W. Lee, and Y. J. Kim, Development of Chloride Induced Stress Corrosion Cracking Test Method for Austenitic Stainless Steel Using C(T) Specimen,
Trans. Korean Soc. Mech. Eng. A. 43(6) (2019) 401–408.
https://doi.org/10.3795/KSME-A.2019.43.6.401
[CROSSREF]
4. Final report 1025121, Validation of Stress Corrosion Cracking Initiation Model for Stainless Steel and Nickel Alloys. Effects of Cold work. EPRI. (2012)
5. Final Report 3002005474, IASCC Initiation Model for Stainless Steels. EPRI. (2015)
7. A. Cook, N. Stevens, J. Duff, and A. Mishelia, Atmo-spheric-induced Stress Corrosion Cracking of Austenitic Stainless Steels under limited Chloride Supply, Proceedings of 18th International Corrosion Congress. Perth, Australia(2011) 1–11.
8. D. T. Spencer, M. R. Edwards, M. R. Wenman, C. Tsitsios, G. G. Scatigno, and P. R. Chard-Tuckey, The Initiation and Propagation of Chloride-induced Transgranular Stress-Corrosion Cracking (TGSCC) of 304L Austenitic Stainless Steel under Atmospheric Conditions,
Corros. Sci. 88 (2014) 76–88.
https://doi.org/10.1016/j.corsci.2014.07.017
[CROSSREF]
9. J. I. Tani, M. Mayuzurmi, and N. Hara, Initiation and Propagation of Stress Corrosion Cracking of Stainless Steel Canister for Concrete Cask Storage of Spent Nuclear Fuel,
Corros. 65(3) (2009) 187–194.
https://doi.org/10.5006/1.3319127
[CROSSREF]
10. SAND2016-2992R, C. Bryan and D. Enos, Summary of Available Data for Estimating Chloride-induced SCC crack growth rates for 304/316 stainless steel,
Sandia National Laboratories. (2016)
[CROSSREF]
11. ASTM E1820-18, Standard Test Method for Measurement of the Fracture Toughness. American Society for Testing and Materials (ASTM). (2018)
12. ASTM E1457-23, Standard Test Method for Measurement of Creep Crack Growth Times in Metals. American Society for Testing and Materials (ASTM). (2023)
13. S. Yamazaki, Z. Lu, Y. Ito, Y. Takeda, and T. Shoji, The Effect of Prior Deformation on Stress Corrosion Cracking Growth Rates of Alloy 600 Materials in a simulated pressurized Water Reactor Primary Water,
Corros. Sci. 50(3) (2008) 835–846.
https://doi.org/10.1016/j.corsci.2007.07.012
[CROSSREF]
15. L. Chang, M. Grace Burke, K. Mukahiwa, J. Duff, Y. L. Wang, and F. Scenini, The Effect of Martensite on Stress Corrosion Crack initiation of Austenitic Stainless Steel in High-Temperature Hydrogenated Water,
Corros. Sci. 189 (2021) 109600.
https://doi.org/10.1016/j.corsci.2021.109600
[CROSSREF]
16. A. J. Sedricks, Corrosion of Stainless Steels 2nd Edition, John Wiley &Sons, Hoboken, Usa. (1996) 464