A Feasibility Study on Dissimilar Metals Friction Weld Strength Analysis by Ultrasonic Techniques

S. K. Oh, D. J. Kim

Key words: Friction weld, Pulse-echo method, Reflection coefficient, Acoustic impedance, Acoustic emission, Analysis of variance

Abstract

Friction Welds are formed by the mechanisms of diffusion as well as mechanical inter-locking. The severe plastic flow at the interface by the forge action of the process brings the subsurface so close together that detection of any unbonded area becomes very difficult. No reliable method is available so far to determine the weld quality nondestructively.

This paper presents an attempt to determine weld strength quantitatively using the ultrasonic pulse-echo method. The new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. This coefficient provides a single quantitative measurement which involves both acoustic energy reflected at the welded interface as well as transmitted across the interface.

As a result, it was known that the quantitative relationship between the coefficient and the weld strength (torsional strength) could be drawn.

1. 서론

超音波법은 주로 쌓아, 냉각, 고주파 결합(fusion welding) 등에 사용되며, 결합은 일차의 결합이 환경의 첨하로 발생하게 됨으로써 벽면에서 흉내나는 결합이 발생하게 된다. 그러나 결합결합에 의한 결합이나 다른 결합에 대해서는 일차의 결합으로 그 결합

* 釜山水産大学
** 釜山開方大學

Adams와 Taylor는 특정로 펄스-에코(pulse-echo me-
항일해에 의해 첫충성에 의한 마찰공정이 각별한 검査법을 제님하였는데 마찰공정의 흐름으로써 결합 부분의 내결합을 검출하고자 한 것이었다. 그러나 그 결과는 이음면으로 부터의 반사파가 광선으로 부터의 편도(scattering)을 나타내는 범위에 염증되는 결과로 있었다. 또한 투과파가 12MHz의 속도로 전달된 접촉면(transducer)을 사용으로서 보다 높은 투과파와 반사파가 얻을 수 있었지만 CRT 스크린에 나타난 반사파의 위치와 크기에 기초를 두고 측정하여 탄성의 결과는 정밀도가 높았다. 이는 기재할만한 결과로 분할 수 없었다. 또한 최근에는 것으로 검사법의 일종인 AE(acoustic emission)법에 의한 마찰용접 강도측정이기도 연구되고 발전하고 있다. 그러나 아직 상용화 단계는 아니다.

본 연구는 마찰공정의 각별한 검査기술을 도달하는 것으로서 시스템 개발을 목표로 하였으며, 초음파를 이용한 마찰공정의 유용성이나 기타 결과는 없는 결과에 비해 투과파에 대해 투과파로 측정하여 반사파를 계산하였으며, 이 반사계수에 의한 응용장 도해력의 가능성이 관계 조사한 실험적 연구이다.

2. 실험방법

2.1. 실험장치 및 재료

실험에 이용된 기계와 측정기는 Toho Control Co, LTD의 자동마찰시험기(THFU-25HW), Tokyo Keiki의 초음파시험기(SM90), Kawasaki Tetsu의 테스트시험기(KTM-50) 등이 있다. 웅집에 사용된 혼합재료는 Cu과 Al이며, 재료의 성분은 Table 1과 같다.

2.2. 실험방법

마찰용접을 하기 위하여 Cu과 Al을 Fig.1(a)에서와 같이 반반각각 하였다. 이 실험을 마찰시험기에서, 회전수 2000rpm, 마찰가스압력 P1=4.3kg/mm², 업셋(upset)압력 P2=8.5kg/mm², 업셋시간 t2=4 sec로 설정하여 하고 마찰가스시간 t1을 1sec에서 6.5sec까지 0.5sec간격으로 변화시켜가면서 실험하였다. 이에 알루미늄 감압 P3과 제어시간 t3은 0으로 하였으며, 응용계 충진량(torsion)을 측정하였다(Fig.1(b)). 그리고 초음파측정의 정밀성을 유지하기 위하여 마찰시험기에 설치된 초음파시험기로 반사계수(R)를 측정하기 위한 향상으로 신호가공 하였는데 Cu와 Al의 길이가 각각 30mm, 지름 23mm로 하였다(Fig.1(c)). 이에 두면면은 충격과 정밀히 수직이 되도록 하고 면의 꺾등도 균일하게 가공하였다.

![Fig. 1. (a) Welding workpieces (c) Ultrasonic test specimen (b) Welded workpiece (d) Torsion test specimen](image)

![Fig. 2. Schematic representation of ultrasonic pulse-echo system](image)

| Table 1. Chemical compositions and mechanical properties of base metal. |
|-----------------|-----------------|-----------------|
Materials (bar)	Chemical compositions (Wt %)	Tm* kg·m				
AA 1050	Cu 102					
	Zn	Fe	Pb	Si	Sn	Mn
AA 1050	3.20	0.40	0.30	0.40	0.50	0.40
Cu 102	0.20	0.20	0.01	—	—	—

* Tm: Maximum torsional moment of specimen with 1.5mm R notch on φ23mm bar.
초음파 측정은 Fig.2에서의 같이 Cu의 단면에 삽입를 부착하여, 중심교정구를 이용하여 일정압력에 고정으로 가고 반사파를 초음파함선의 CT의 스크린상에서 검토하였다. 이에 정착액(couplant)로서 캐본유(Shell Tellus #32)를 사용하였고, 검사주는 (Tokyo Keiki Co., 5Z10N)는 주파수가 5MHz이고 절두는 10mm이다. Fig.3에서 보는 바와 같이 일관성 있는 선형성을 갖추기 위하여 A1 반사파의 진폭은 스크린상에서 55% 균처의 값을 되도록 계인(gain)을 조절하였다.

![Fig. 3. Scope display of echoes obtained from a welded specimen](image)

3. 결과 및 고찰

3.1 마찰용질부의 초음파와 반사계수

 초음파 반사계수 \(R \)은 어떤 물질에 입사된 파가 접촉하고 있는 다른 물질에 부딪혔을 때, 반사되어온 파에서 측정한 음속 \(P \),의 입사 파 자체가 가진 음속 \(P \)에 대한 비 \(R = P / P \)를 나타낸다.

마찰의 감쇠계수 \(\mu \)와 입사파의 음속 \(P \), 및 \(P \)과 동등한 \(\mu \)를 알고 반사파의 음속 \(P \)을 측정하면, 다음 이 הא(5)에서 반사계수를 구할 수 있다.

\[
P = P \cdot R \cdot e^{-\mu t}
\]

그러나 이와 (5)에 의한 경우는 일반적으로 감쇠계수 \(\mu \)를 정확히 알 수 없으며 입사파의 크기로 제거에서 적절한 것을 알아내야 하는 데 이므로, 적은 변화를 구별할 수 있는 반사계수의 정확한 측정은 매우 어렵다.

또한, 두 매질의 초음파 입피던스(impedance)를 \(Z \)라 하면, 어떤 물질에 대한 접촉 반사계수는 다음 식(6)에서도 구할 수 있다.

\[
R = (Z_1 - Z_2) / (Z_1 + Z_2)
\]

그러나 식(6)에 의한 경우도 동일계로써 강도 또는 포기변화에 따른 초음파 입피던스를 측정하는 것은 실용성이 없으므로 \(R \)값의 변화를 비교하는 데는 적합하지 못함을 실증적으로 확인할 수 있었다.

따라서, 본 연구에서는 앞서 설명한 \(A, A_1, A_2, A_3 \) 세개의 반사파를 측정하여 식(4)에 의해 반사계수를 계산할 수 있었고 각 특성의 반사계수를 상대적으로 비교할 수 있었다.
3.2. 焊接条件과 反射係數

Fig. 5는 마찰가열시간(\(t\), sec)의 증가에 따라 총 업셋량(\(u\), mm)이 비례적으로 증가하고 반사계수의 측정치가 선형적으로 감소하는 현상을 보여준다. 반 사계수의 변화량은 마찰압과 가압력에 의한 이온 면 근처에서의 조적변화 때문이다 것으로 생각되며, 조적변화지역의 크기에 따라 압력을 통과하는 음파
의 감쇠정도가 달라질 것이다.\(^9\) 결과적으로 반사계 수의 값이 변하게 될 것이다. 마찰가열시간 \(t\)이 증 가하면, 즉 업셋량 \(u\)가 증가하면 열향량도 크게 되어 반사계수 \(R\)의 값이 감소하는 현상을 보인다.

Fig. 6은 반사계수와 총업셋량과의 선형적 상관계성을 보여주며 그 실증적을 점정한 결과는 다음 \(7\)와 같으며 분석결과 결과 식(7)과 95\%수준에서 매우 유의할 수 있었다.

\[R = 0.632 - 0.028u \]

(7)

3.3. 초음파반사계수와 용접강도

용접이음강도가 총업셋량에 어떤 상관을 가지고 변화한다는 것은 이미 알려진 사실이다. 즉, 뉴크,

福島의 S25C 핫알에 용접재에 대한 업셋량과 주요기질 와의 상관계를 관찰한 연구보고\(^9\)에 의하면 업셋량의 증가에 따라 인장강도가 급격히 증가하다가 최고값에 달한 다음 약간 감소하는 경향으로 나타났다. 그 런데 Fig. 6에서 업셋량이 반사계수와 선형적으로 높 은 상관성을 가진다는 사실이 밝혀졌으므로, 앞서의 보고\(^9\)의 비교해보면, 용접이음강도와 반사계수 사이에 어떠한 상호관계가 있을 것으로 예측할 수 있다.

Frictional heating time, \(t\), sec

30.5 7 of base metal AA 1050

27.5 90 joint eff

ORZ

Minimum residual moment of a 2 mm deep

Wall thickness

Welding conditions

\(P_1 = 4.3 \text{ Kg/mm}^2; t_1 = 1 - 6 \text{ sec}\)

\(P_2 = 8.5 \text{ Kg/mm}^2; t_2 = 4 \text{ sec}\)

\(N = 2000 \text{ rpm}\)

--- Empirical in effective zone

Fig. 7. Relationship between ultrasonic reflection coefficient and strength of welded joint

Fig. 7은 반사계수와 최대이음모두에의 관계를 나타낸 시험 결과이다. 본 실험에서 용접이음강도를 인장시험에 의하지 않고 비음파시험으로 한 것은 결

表 2. lack of fit test

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares</th>
<th>Degree of freedom</th>
<th>Mean squares</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>1.562</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure error</td>
<td>1.033</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>0.529</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks</td>
<td>From F-table: F(4, 16; 0.95) = 3.29 > 2.05 (95% confidence)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

음속측정을 시행한 시험선으로 직접 파단시험을 하되, 실험시점값은 측정치가 개입되었고 마찰구열법적 허용강도 특성의 조사도 필요하였다. 10)

Fig. 7에서 보는 바와 같이 강도는 반사계수의 증가 (마찰구열시, 4의 강소 및 응용양의 강소)가 높아져 점차 증가하게 지속적 증가율이 있고 특히 초음파를 이용한 망막판출의 최적범위를 구하기 위하여 4개의 결과, 반사계수 R의 값이 45 ~ 58% 범위에서 강도T= 반사계수R의 관계에 적합되는 최적결로를 검증하기 위해 F 검정에 의해 구한 결과는 (8)와 같으며, Table 2의 회귀곡선의 혼합식에 사용된 분산분석표로서 그 결과는 정확성 95%에서 적합을 99%에서 적합을 있다.

\[T = 64.311 - 38.143R + 7.8081 \times 10^{-3}R^2 \]
\[- 5.0285 \times 10^{-5}R^3 \] (45% ~ 58%)

그리고 비틀림 파단은 알루미늄 나선 HAZ이므로 응용 성과 볼 90% 이상의 강도 (\(T \geq 27.5 \text{ kgf} \cdot \text{m} \)) 를 얻은건양이 양호한 반사계수의 최적범위로 고려하면 그 범위는 R = 49 ~ 57%로 나타난을 알 수 있었다.

4. 결 론

異種材料 Cu系과 Al系의 마찰구열에서 응용음에도 의한 응용음함도에서의 가능성이 있어 연구한 결과, 다음과 같다.

(1) 응용음파측정기와 응용음파측정기를 이용하여 응용음함도에서의 응용음파측정기와 응용음파측정기의 측정이 가능한 것으로 보인다.

(2) 아날로그회로의 증가에 따라 응용음함도는 바람직한 증가하되음 응용음파측정기의 성공적으로 증가하되음 응용음함도의

大韓焊接學會誌, 第 4 卷, 第 2 号, 1986 年 9 月

7. 印世奎, 金東祚, 李洛紀, 异種鋼管摩擦焊接의

당 학회지는 여러분의 정성으로 이루어집니다. 알찬 학회지로 성장할 수 있도록 귀중한 제한과 연구를 탐색 보내주시기 바랍니다. 원고 작성은 본 학회지 공에 있는 대한용접학회지 절정 요구를 준수하여 주시시오.

제목된 원고는 당 학회지에 게재되면 저작자는 번째권 20부를 증정합니다.

* 모집 분야: 연구논문, 기술보고, 강좌, 해설 및 친필
* 원고 접수: 수시 접수
* 보내실 곳: 300-32 중남 대역 연구단지 사서함 6호
* 대한용접학회
* 전화 (042) 822-7401 (교 228, 256)