A Study on the Cold Pressure Welding of Dissimilar Metals

K. W. Um*, C. K. Lee**

Key Words: Cold Pressure Welding, Surface Roughness, Welding Pressure, Welding Stage, Welding Time

Abstract

This paper presents the weldability for cold pressure butt welding method in junction of dissimilar metals each other. Although the weldability between the same aluminium metal plate welding has been studied, the study of the rod of aluminium and copper has not fully been investigated.

The purpose is to suggest the optimal conditions on the rod of those under above method. To obtain the optimal conditions, associated experiments were performed in a various welding parameters.

Consequently, it was proved that the mechanical properties such as tensile strength, hardness and bending strength could be obtained excellent particularly under the welding conditions;

pressure is (32~39) \times 10^4 \text{kg/cm}^2,

time is beyond 70 seconds,

stage is higher than fifth stage.

1. 結論

熱を利用して 溶接する 熱に 依る 变形と 応力集中を
抑制させ ることが ある。しかし、溶接状態を 改善させる
ために 熱変形と 応力集中を 施すための 新しい 溶接
方法を 必要と する ことが あった。

次に、常温溶接は、常温において 無 無力で ガス
溶接に 近い方法で 溶接法に 比べて 陥化せ る と
異種金屬の 溶接で 利用され る。

現在、メタルヒーリング (metallic bonding) の 線間
(bimetal) の こと、異種金屬を 溶 溶接して 製入化され
も、材料に 近く 溶接条件が 要求される 製品の 生産に
異種金屬の 二部に 関する 機能を 研究している。
2.1.2. 壓 接

接接材의 接觸表面前에 沾附着的 附著物은 表面에서의 原子擴散을 妨害하여 加壓後에도 面面의 完全密着を 妨害한다. 따라서 表面を #1000의 사포 (Sand paper)로써 완전히 加工한 後 毛細孔을 洗淨하였다.

Fig.1은 표면 조도계 (Surface roughness tester)로 計測한 表面週波数를 나타낸 것인데 이 거칠기의 程度가 大気와 接觸하는 面積의 크기를 決定하고 또한 接接後 決孔의 存在에 影響을 미치는 重要な 要素 이다.

![Fig. 1. The result of roughness test](image)

Table 1. Chemical composition and mechanical properties of aluminium and copper.

<table>
<thead>
<tr>
<th>Material</th>
<th>Chemical compositions(%)</th>
<th>Tensile Strength (kg/mm²)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu</td>
<td>Fe</td>
<td>Zn</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0.31</td>
<td>0.41</td>
<td>0.00</td>
</tr>
<tr>
<td>Copper</td>
<td>99.70</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Journal of KWS Vol. 5, No. 3, Sep., 1987
2. 2.2.2. 유형 측정

압력의 변동을 줄이기 위해 유형 측정기의 테스트를 실시하고, 유형 B0801에 준하여 유형 측정기의 조건을 조합하여 유형 B0802에 따라 U.T.M을 이용하여 공정에서의 5mm/min의 변속을 유지하여 실험을 수행하였다.

(2) 금속 측정

금속의 도수 분포는 다음과 같은 표준을 따른다.

\[\begin{align*}
 &\text{Aluminum} & 150 \\
 &\text{Copper} & 150 \\
\end{align*} \]

\(\text{a) Before Pressure Weld} \)

\(\text{b) After Pressure Weld} \)

Fig. 3. Shape of pressure welding specimen.

Fig. 4. Specimen of hardness test for cold pressure welded joint.

3. 실험 결과 및 고찰

3. 3.1. 압력 조건과 유형 측정의 관계

압착은 두 자가 형성 변형을 일으킬 수 있는 강도의 압력을 가해하여 접합면에 생기는 원자의 확산을 제한, 이 확산을 억제하는 방법으로 단단히 접합할 수 있는 자가의 접합을 관찰하여 원자의 접합이 일어난 후의 압착을 이용하였다.

Fig. 5는 원자간에 작용하는 전하 원자간 결합의
Fig. 5. Relation between force and distance.

Fig. 6. Effect of welding pressure on tensile strength at pressure weld.

Fig. 7. Effect of welding stage on tensile strength at pressure weld.

Fig. 8. Effect of welding time on tensile strength at pressure weld.

Journal of KWS Vol. 5, No. 3, Sep., 1987
유전과의 常溫壓接에 關한 研究

常溫壓接에 必要한 時間은 주로 壓力에 의하여 정
하여 거의에 一定의 加壓下에서는 超正時間以上 壓
接은 하여도 接合部分의 引張強度는 增加하지 않는
다.

Photo. 1에서 보는 바와 같이 母材의 破断은 알루
ミーニ움에서도 壓接部位를 빼내나 切断힘을 볼 수 있다.
이는 32×10^5 kg/cm²의 熔接 壓力으로 壓接한 것인데
接合部의 引張が 種方적 보인다.

Photo. 2. Shape of specimen after cold pressure
welding.

3.2. 壓接條件과 硬度의 關係

各々의 壓接條件에서 壓接後 接合部의 硬度를 測
定한 結果로서 Fig.9～Fig.13의 特性이 나타나는데
接合部位の 硬度が 上昇하는 것은 組織이 穴細化
되었기 때문이다. 그리고 横方向의 硬度分布는 熔接
圧力과 時間, 熔接段의 變化에 対하여 그다지 大幅
相異하지 않게 나타나는데 이로써 硬度分布가 熔接

Fig. 9. Vickers Hardness of each position at
various welding condition.

Fig. 10. Vickers Hardness of each position at
various welding condition.
Fig. 11. Vickers Hardness of each position at various welding condition.

Fig. 12. Vickers Hardness of each position at various welding condition.

3.3. 焊接条件と試験条件の関係

熱接温度52 x 10°Kg/cm²以上で熱接温度5段階で、各段階における電流密度は180°から75°に変化した。熱接温度は、接合部の境界面での硬度差異が著しく、異種金属間の常温

Photo. 3. Bending test specimen of cold pressure welding.
3.4. 壓接條件과 焊後組織觀察

photo. 4～photo. 6은 壓接條件의 變化에 따른 接合部 界面を 繼続撮影하여 中心部에서 4mm 범위 진 지점에 組織을 比較한 것이다. 鋼과의 壓接面에서 中心線으로 crack closing現象과 같은 接合이 이루어져 焊接面과 焊接段이 적합수록, 焊接時間이 짧으면 용된 焊接部에 void가 나타나 壓接
이 不完全하게 된다. 亦如한 現象은 壓接過程으로
考察하면 焊接 界面의 壓力에 의해 母材
相互間에 原子의 擴散移動이 일어나고 亦 擴散과
함께 高溫 크리프(creep) 變形과 總合 焊接
이 나타나 時間이 경과함에 따라 接合面의 面積이
增加하고 亦 모래의 接合面의 境界가 소실되다고
생각된다.

焊接部의 組織觀察에서도 焊接面積은 32×10^4kg/cm²
以上과 接合段이 5段以上, 焊接時間 70秒 以上에
서 良好한 組織이 觀察된다.

Welding pressure: 18×10^4kg/cm² Welding pressure: 25×10^4Kg/cm²
Welding time : 50sec Welding time : 60sec
Welding stage : 4 Welding stage : 5

Photo. 4. Microscopical feature of the pressure welding interface (X200)
4. 结

直径 8mm의 알루미늄 합금과 합금의 인공질 바닥에 있어서의 매기력, 매기시간, 매기효과의 영향, 성형, 공급력도, 매기부의 조직 등에 미치는 영향을 실험적으로 연구한 결과 다음과 같은 결론을 얻었다.

1) 매기 후 매기력이 32×10^3 Kg/cm²에서 39×10^3 Kg/cm²일 때 매기효과, 성형 및 공급력도가 우수하다.

2) 매기시간이 70초 이상이며 매기효과는 5대 이상에서 접합강도가 우수하다.

参考文献

1) 李喆求·嚴基元： 알루미늄의 인공질 바닥에 관한 연구(Ⅰ)，大韓焊接學會誌，Vol.3，No.2(1985).
2) 韓絢珍·李喆求·嚴基元： 알루미늄의 인공질 바닥에 관한 연구(Ⅱ)，大韓焊接學會誌，Vol.4，No.1，(1986).
3) 長柄隆夫：電車用架線의 인공질 바닥，日本焊接學會誌，Vol.55，No.1(1986)，pp.31～35.
4) 橋本達成：Beryllium-銅合金の屈曲●接に関すること

Journal of KWS Vol.5，No.3，Sep.，1987
10) 日本焊接協会. 壓接工学 システム(1983), pp. 95-129.