A Study on Mechanical Stress Relieving in a Butt-Welded Pipe

Y. S. Yang *

Key Words: residual stress (잔류응력), mechanical stress relieving treatment (MSR, 기계적 잔류응력 이완법), finite element method (유한요소법), pipe welding (파이프 용접)

Abstract

The heat transfer and thermal stress distribution were numerically determined by using the finite element method for a butt-welded pipe. A mechanical stress relieving (MSR) treatment which has been frequently used in the fabrication of pressure vessels instead of the post weld heat treatment (PWHT) was also simulated to investigate its effect of reducing the residual stress in the welded zone by a mechanical loading.

1. 서 론

아크를 이용하여 공작물에 열을 가하면 국부적인 가열에 의해 불균일한 온도분포를 갖게되어 모서리 열응력이 발생한다. 모서리 열을 받으면 양복응력이 저하하기 때문에 발생한 열응력은 양복응력을 초과하여 소성변형을 일으키고 난각, 수축 후 최후에 재료내부에 잔류응력을 생성시킨다. 잔류응력은 구조물이 받은 하중과 종합되어 취성파괴의 원인이 되기도 한다. 또한 피로저항에도 영향을 미치며 응력부식균열의 주원인이 되기도 한다. 그러므로 용접구조물에 대해서 잔류응력을 이완시키는 처리를 필요로 한다.

잔류응력 이완법에는 후열처리 (post weld heat treatment, PWHT)에 의한 방법이 효과가 확실하고 많은 연구결과가 있으므로 일반적으로 사용되고 있다. 그러나 대형압력용기의 경우는 열처리 노의 크기 제약등으로 사용이 곤란하며, 기계적 잔류응력 이완법 (mechanical stress relieving treatment, MSR)에 비하여 매우 비경제적이다. 이러한 이유로 용접부 잔류응력 제거를
위하여 MSR 처리법이 추천되고 있다. 그러나 MSR 처리법은 연구가 미약하여 데이터가 부족하기 때문에 어느정도의 하중을 어떠한 방향으로 가해야 하는지, 잔류응력이란량이 얼마인지의 체계적인 도전이 없는 것으로 보아 그로면 본 연구에서는 파이프 용접시 온도분포, 열응력 및 잔류응력을 계산한 후 3가지 종류의 하중을 가하였음을 때 잔류응력의 제산에 대해서 유한요소법을 이용하여 계산하였다.

2. 유한요소 모델링

비정상 상태의 열유동과 열응력 해석은 유한요소법을 이용하였으며, 유한요소 프로그램은 상용 package인 ABAQUS를 사용하여 계산하였다. 계산과정은 해석영역내의 온도분포를 구한 후 이 데이터를 이용하여 열응력을 시간 변화에 따라 시변이 상온으로 냉각시까지 계산하면 잔류응력을 구할 수 있고, 용접후 MSR 처리 과정을 해석하면 잔류응력의 이전량을 구할 수 있다.

2.1 해석영역 및 경계조건

Figure 1과 같이 파이프 용접시에는 용접선을 따라 3차원 해석을 수행해야 하나 계산량이 너무 많고 CPU 용량이 부족하므로 축대칭으로 가정하여 2차원 (r-z축) 해석을 하였다. 열원의 입력은 용접선을 중심으로 다울 수식과 같이 Gaussian 분포로 시간변화에 따라 변하면서 flux로 입력된다.

\[q(d) = \frac{3Q}{\pi d^2} \exp\left(-3\left(\frac{d}{d_c}\right)^3\right) \] (1)

\(Q \) : power transferred into the substrate
\(d \) : characteristic radius (arc intensity falls to 5% of the max. intensity)
\(d_c \) : distance from arc center, \(d^2 = d^2 + (d - v_w t)^2 \)
\(v_w \) : welding velocity, \(t \) : welding time

용접선을 중심으로 좌우 대칭이므로 \(z=0 \) 인 면에서의 단열조건이며 표면에서는 다음 수식과 같이 자연대류가 일어난다 (Fig. 2).

\[\begin{align*}
 k \frac{dT}{dr} &= h_a(T - T_a) - q(d) \quad \text{at} \quad r = r_o \\
 k \frac{dT}{dz} &= h_a(T - T_a) \quad \text{at} \quad z = z_s \\
 k \frac{dT}{dr} &= h_a(T - T_a) \quad \text{at} \quad r = r_i \\
 k \frac{dT}{dz} &= 0 \quad \text{at} \quad z = 0
\end{align*} \] (2-5)

\(T_a \) : atmospheric temperature
\(h_a \) : natural convection coefficient
\(k \) : thermal conductivity
\(r_o \) : radius of pipe outer surface
\(r_i \) : radius of pipe inner surface
\(z_s \) : half pipe length

열응력 계산을 위한 경계조건은 Fig. 2와 같이 용접선을 중심으로 좌우 대칭이므로 \(z=0 \) 인 면에서
2부향 변수를 구축하였으며, 축대칭면계므로 2부향으로 구속이 이루어져 있어 rigid body motion을 구축하는 경계조건을 만족한다. 요소분 환은 은도구배가 심한 용접부 주위에서는 미세하 게 분할하였고, 별어진 부분에서는 큰요소를 사용 하였다. 또한 해석을 위한 파이프 길이(\(z = z_0\))는 관류용설 부분에 영향이 거의 없는 100 mm로 하였 으며, 두께는 3mm, 반경은 150mm(\(r = r_0\))이다.

2.2 용접조건 및 재료의 물성치

시편 재료는 공업적으로 많이 사용되고 있는 SUS304를 사용하였으며, 수치해석 시 재료의 열적, 기계적 성질은 은도변화에 따라 고려하였으며, 장 영효과도 고려하였다. 용접조건은 1 pass TIG용 점으로 전압 10V, 전류 200A, 속도 1.0 mm/s이고 계산시 입열효율은 50%를 사용하였다.

3. 기계적 관류용설 이완법(MSR)

용접부의 관류용설 분포는 일반적으로 용접부 주위에서 인장관류용설, 별어진 위치에서는 압축 관류용설이 발생한다. 용접부 주위의 인장관류용설은 가열후 경과과정을 거쳐서 수축에 의해 발생하고, 압축관류용설은 발생한 인장관류용설의 힘의 평형을 만족하기 위해서 생성된다. 그러므로 용접 부 주위의 인장관류용설이 이완되면 주위의 압축관류용설도 함께 이완된다. 용접부 주위의 임 의점 초기 인장관류용설 상태가 Fig. 3 용력-변형 을 선도에서 \(\sigma_r, \varepsilon_r\) 상태로 생각하고, 인장관류용설을 가하여 변형상태가 \(\sigma_r, \varepsilon_r\)일 경우, 다시 압축관류용설을 제거, 초기 변형상태로 복귀되었다면, \(\sigma_r, \varepsilon_r\)되어 관류용설 상태가 \(\sigma_r\)에서 \(\sigma_r, \varepsilon_r\)로 이완되는 결과가 된다.

계산시 관류용설 이완을 위한 하중형태는 3가지 종류의 다른 위치에서 작용하였다. 첫째방법은

![Fig. 3 Schematic drawing of stress-strain behaviors during MSR treatment in tensile stress zone](image)

![Fig. 4 Location of pressure load P at pipe inner surface](image)

![Fig. 5 Location of pressure load P on pipe outer surface](image)
Fig. 4와 같이 파이프 내부면에서 압력이 작용하는 경우이다. 파이프 내부에 유압을 이용하여 작용하거나 내부 반경보다 큰 농 (bar)을 가위서 압력을 가할 수 도 있다. 이때 파이프에서 작용하는 압력은 고효방향은 고려하지 않고 원주방향응력은 다음식으로 표시된다.

\[\sigma_p = \frac{pr}{t} \]

\(p \) : pressure, \(r \) : pipe radius, \(t \) : thickness

\(\sigma_p \)의 크기를 항복응력의 30%, 60%, 90%가 되도록 압력을 가한 후 다시 하중을 제거하였다. 두 번째의 하중조건은 파이프 외부에서 압력을 가하

는 방법으로 Fig. 5와 같이 시편내에서는 압축응력이 작용되며, 내부응력 \(\sigma_p \)의 크기를 항복응력의 30%, 60%, 90%가 되도록 압력을 가한 후 다시 하중을 제거하였다. 세번째 방법은 Fig. 6과 같이 시편의 축수면에서 하중을 작용하였고, 하중의 크기를 위의 두조건과 동일하게 축방향 응력 (\(\sigma_p \))은 항복
응력의 30%, 60%, 90%가 되도록 가하였다.

Fig. 6 Location of pressure load P on pipe end surface

Fig. 7 Hoop stress distributions at pipe inner surface under inner pressure loading of 90% yield stress

Fig. 8 Hoop stress distributions at pipe inner surface after various inner pressure loading

Fig. 9 Axial stress distributions at pipe inner surface after various inner pressure loading
4. 결과 및 고찰

압력용기 사용시 장류용력 분포의 영향은 주로 파이프 내면에서 중요한 역할을 하기 때문에, 고찰 시 해석 영역은 파이프 내면에서의 장류용력 분포를 중심으로 고찰하였다. Figure 7은 MSR처리 과정 중 공정부의 응력상태를 나타내고 있다. 공정후 파이프 내면에서 원주방향 장류용력 (hoop stress)은 용접선 주위에서 인장장류용력과 멀어진 부분에서 압축장류용력을 나타내고 있다. 공정후 파이프 내부에 압력을 항복용력의 90%가 되도록 가하면 용 접부의 응력상태가 전체적으로 인장용력장이 형성된다 (peak MSR load). 그 후 작용한 하중을 제거하면 상당량의 장류용력이 이완된 상태로 남겨진다.

Figure 8, 9는 용접후 파이프 내부에 3가지 크기의 압력을 가하여 장류용력의 이완되는 정도를 계산하였다 (Fig. 4). 원주방향 응력과 축방향 응력 모두 90%의 항복용력이 내부압력으로 가해지면 용 접선 주위에서 인장 장류용력이 거의 제거될 수 있고, 가장 하중의 크기 (항복용력의 30%, 60%, 90%)에 따라 선형적으로 감소함을 관찰할 수 있다. 그러나 용접선에서 멀리 멀어진 부분의
압축전류응력은 MSR 처리로 감소하였으나 상당량의 압축전류응력이 남아있음을 알 수 있다. 용접부의 압축전류응력의 생성근원은 전류전류응력의 생성에 의해 형의 평형을 만족하기 위하여 발생하기 때문에 전류전류응력이 완전히 제거되면 압축전류응력도 제거되어야 한다. 이는 해석영역 전체를 주어진 방향으로 형의 합성을 구하기로 0(zero)이 되어야 한다. 즉, 항복응력의 90% 내부력으로 MSR 처리후는 전류전류응력은 해석영역 내에 고루 분포하여 적은 값을 나타내고, 압축전류응력은 한 부분에 집중되어 있어 100MPa 이상의 압축전류응력을 나타내고 있다.

Figure10, 11은 용접 후 파이프 외부에서 압력을 가하여 MSR 처리한 결과를 나타내고 있다(Fig. 5). 이때 용접부에는 압축응력이 작용하여 전류응력을 이완시키게 된다. 항복응력의 30% 외부압력을 가하여도 전류응력의 이완되는 양이 아주 미미함을 볼 수 있고, 90% 외부압력을 가하여도 상당량의 전류응력이 존재함을 알 수 있다. 용접후 파이프에 작용되는 하중이 압축응력이므로 원주방향 전류전류응력은 이완되는 양이 적으나, 압축전류응력은 영역이 넓어 지면서 최고치(peak value)는 급격히 감소함을 볼 수 있다(Fig. 10). 용접부의 전류응력은 이완하기 위하여 MSR 처리를 수행할때 공작물에 전류응력을 가하면 전류전류응력의 최고치가 급격히 감소하고, 공작물에 압축응력을 가하면 압축전류응력의 최고치가 급격히 감소함을 알 수 있다. 용접부의 전류응력은 대부분 전류전류응력이 문제에 되기 때문에 MSR 처리는 공작물에 전류응력을 가하여 처리하는 것이 유리하다. 그러나 용접부에 전류응력을 가하면 균열의 생성 또는 진전 등 여러가지 문제점이 야기되므로 압축응력을 가하여 전류응력을 이완시키는 방법이 요구되기도 한다.

Figure12, 13은 용접후 파이프 구간에서 응력을 가하여 MSR 처리한 결과를 나타내고 있다(Fig. 6). 이때 용접부에는 전류응력이 작용하여 전류응력을 이완시키게 된다. 전류응력 이완량은 작용하중의 증가에 따라 이완량도 많아짐을 보여주고 있다. 내부에 압력을 가하여 전류응력을 이완하는 방법과 동일하게 공작물에 전류응력을 작용(응력의 방향은 다름)하였으나 이완되는 양이 적음을 알 수 있다.

Figure14, 15는 위의 3가지 조건의 하중을 항복응력의 90% 가지 작용하여 MSR 처리를 하였을 때의 해석결과를 보여주고 있다. 용접선 주위의 전류전류응력은 내부에서 압력을 가한 경우가 가장 많이 이완되었고, 다음으로 끝단에서 하중을 가한 경우이고, 외부에서 압력을 가한 경우가 가장 적게 이완되었음을 볼 수 있다. 그러나 용접선 주위의
파이프 용접에서 기계적 전류응력 이완법에 관한 연구

압축전류응력은 외부에서 압축을 가한 경우가 가장 많이 이완되었음을 알 수 있다.

5. 결 론

파이프 용접부의 MSR 처리시 전류응력의 이완 현상을 유한요소법을 이용하여 해석한 결과 다음과 같은 결론을 얻을 수 있었다.

(1) MSR 처리시 전류응력 이완은 작용하중의 크기 뿐만 아니라 방향에도 영향을 받는다. 본 연구에서는 3가지 경우 중 파이프 내부에서 압력을 가하는 방법인 강관전류응력의 이완이 가장 큰 효과가 있었다.

(2) 파이프 용접후 내부에서 압력을 가하여 전류응력을 이완시킬때, 용접선 주위의 잠재 전류응력의 이완량은 가한 하중에 비하여 비교적 선형적으로 증가함을 보여 주었다.

(3) 파이프 용접후 MSR 처리시 가한 하중이 잠재력면 잠재전류응력 최고값 (peak value)의 감소가 두드러지고, 가한 하중이 압력이면 압축전류응력 최고치의 감소가 크게 나타난다.

후 기

본연구는 1995년도 전남대학교 자동차연구소의 공로과제 연구에 의하여 수행되었습니다. 이에 관계자 여러분께 감사드립니다.

참 고 문 현

2. H. Lee, : "Shakedown (Mechanical Stress Relief) of liquid filled pressure Vessels", LLOYD's Register of Shipping, London