터어빈 블레이드용 단결정 초내열합금의 용접·접합현상

김대임

Joining Characteristics of Single Crystal Superalloys for Turbine Blade

Dae-Up Kim

1. 서 론

항공기용 제트엔진이나 발전플랜트 등과 같이 고온·고압의 가혹한 조건에 사용되는 가스터어빈에서
는 터어빈 임팩트오더 추력에이나 연소효율을 직접 결정
하기 때문에 성능향상을 위해서는 보다 고온에서 사용 가능한 터어빈 블레이드용 초내열합금의 개발이 절
실하다. Ni기 초내열합금은 Fe기, Co기 초내열합금
에 비해 고온에서의 기계적성질이나 내식성이 우수하
기 때문에 가장 선호되는 높은 내열재료로서 주목받고
있다.

Ni기 초내열합금은 내열온도가 높은 재료의 필요성
에 부응하기 위하여 보통주조 초내열합금(CC), 일방
향용고 초내열합금(DS), 단결정 초내열합금(SC)의
순으로 개발되고 있으며, 현재는 일방향용고 초내열합
금 항공기용 가스터어빈 엔진에 주로 사용되고 있다[2].

Ni기 단결정 초내열합금은 고온에서 장시간 사용시
의 조작저항성, 내고온부식성, 내가속저항성 등이 우수
하고, 적응에서도 우수한 연성을 나타낼 뿐만 아니
라 고온에서의 기계적특성이 일반 초내열합금에 비해
상당히 향상되어 있다. 특히, 터어빈 블레이드에 요구
되는 크리프·파탄수명 및 고온저계열로 피로수명이 보
통주조 초내열합금에 비해 수십배나 길다. 이렇게 Ni기
단결정 초내열합금은 실용적으로 우수한 특성을 가
지는 내열재료이나, 이용범위를 보다 확대시키기 위해
서는 단결정 초내열합금의 특성을 충분히 발휘시킬 수
있는 용접·접합기술의 확립이 불가결하다. 또, 단결
정 재료의 접합은 금속재료의 접합과정 혹은 접합의
문제를 해결한다고 하는 관점에서도 핵심적으로 중요
한다.

본 보고에서는 각종 단결정재료 중에서도 Ni기 단결
정 초내열합금을 중심으로 하여 단결정 재료의 용접·

접합현상 및 문제점에 대해서 기술한다.

2. Ni기 단결정 초내열합금의 종류와 특성

Ni기 단결정 초내열합금의 개발연구를 Fig. 1에 나
타낸다[3]. Ni기 단결정 초내열합금은 1940년대 초에
보통주조 초내열합금인 Nimonic80이 개발된 후
1970년대에 들어서면서 개발되었다. 초기에는 Mar-
M200 등의 기존 합금조성이 그대로 사용되었으나,
임계강화원소가 초기용융온도를 저하시켜 환경의 연
성이 우수한 정도로 단결정으로서 큰 이점은 거의 인
정되지 않았다[4]. 이 단점을 개선하기 위해 1976년 이
후에 제1세대 단결정 초내열합금으로서 Mar-M200
 및 Mar-M247에서 각각 임계강화원소로 Co를 제거
1980년대에 들어서서는 기존합금과는 독립해서

Fig. 1 Development history of Ni-base single crystal superalloy
Table 1 Chemical compositions of Ni-base single crystal superalloys

<table>
<thead>
<tr>
<th>Generation</th>
<th>Alloy</th>
<th>Chemical composition (mass%)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td></td>
<td>Ni</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td>Alloy444</td>
<td>Bal.</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>Alloy454</td>
<td>Bal.</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Alloy203E</td>
<td>Bal.</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>NASAIR100</td>
<td>Bal.</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>CMSX-2</td>
<td>Bal.</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>CMSX-3</td>
<td>Bal.</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>CMSX-6</td>
<td>Bal.</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>PWA1489</td>
<td>Bal.</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>SRR99</td>
<td>Bal.</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>RR2000</td>
<td>Bal.</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>TMS12</td>
<td>Bal.</td>
<td>6.6</td>
</tr>
<tr>
<td>Second</td>
<td></td>
<td>Ni</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td>CMSX-4</td>
<td>Bal.</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>MXXON</td>
<td>Bal.</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>PWA1484</td>
<td>Bal.</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>SC83K</td>
<td>Bal.</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>TMS26</td>
<td>Bal.</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>TUT92</td>
<td>Bal.</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>TUT101</td>
<td>Bal.</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>TM681</td>
<td>Bal.</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>TM682</td>
<td>Bal.</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>TM683</td>
<td>Bal.</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>TM684</td>
<td>Bal.</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Alloy454, PWA1480, CMSX-2, SRR99 및 TMS12 등이 차례로 개발되었다. 또한, 내열온도를 한층 향상시키기 위해서 합금제계 프로그램을 이용하여 합금개발이 행해져 고양도 지향 합금인 제2세대 단결정 초내열합금이 개발되었다. 제2세대 합금 단결정 초내열합금으로는 제1세대 단결정 초내열합금의 기본조성에 Re, Hf, Nb, V 등을 참가한 PWA1484, CMSX-4, SC83K, TUT92 등이 반영되어 공격성이 없는 TMS26, TUT101 등이 개발되었다. 한편, 제2세대 단결정 초내열합금은 제1세대 단결정 초내열합금에 비해 비강도는 상승하나 동시에 비강도 증가하는 경향이 있고, 실용부품의 부하를 크게 가기 때문에 최근에는 TMS61, 64 등과 같이 비교적 저비용성이면서 비강도가 큰 단결정 초내열합금이 개발되고 있다. 이와 같은 개발역시에 따라 Ni 기 초내열합금 개발 이후, 50년간에 약 600K 이상의 내열온도 상승이 다발하고 있다. Table 1에는 지금까지 개발된 대표적인 Ni 기 단결정 초내열합금의 비강 및 화 합성분을 나타낸다[13]. 모든 Ni 기 단결정 초내열합금에서 고온에서의 용체화의 비율 및 2단계의 시효처리가 사용되고 있다. 최근, CMSX-4등을 대상으로 하여 국수용을 방지할 수 있는 방법을에서 논의 될 수 있는 한 고온에서 용체화의 비율이 크고 또한 따뜻한 상태로 협력시키기 위한 다단계의 용체화의된 재질도 제안하고 있다[13].

3. 용접·접합현상

Ni 기 초내열합금의 접합에 이용되고 있는 대표적인 접합방법으로는, TIG 용접법, 전자빔용접법, 레이저 빔용접법 등과 같은 응용용접법과, 아울러 접합법, 브레 이지법, 고강성접합법, 액화서화접합법 등의 거시적으로는 보가능용접시기 없는 계면접합법 및 접착 제와 같이 기계적 접합력을 이용한 접합법 등의 다양함도 있다.

Ni 기 초내열합금의 접합에 적용되고 있는 대표적인 접합방법은 앞서 설명한 접합법의 차별점에 근거하여, Fig. 2에 나타낸다.

![Fig. 2 Relation among the heat input, bonding pressure and joint strength for various joining techniques](image-url)
3.1 응용집합법

응용집합법은 니켈 초내열합금의 중요한 접합법으로 현재에도 광범위하게 사용되고 있으나, 응용부 및 열링중(HAZ)의 고온구열 및 열작용 열처리시에 발생하는 열적저항이 문제로 되어 있다. 단절점 합금에 응용집합법을 적용한 경우에는 응용부에 결합이 제어된다고, 양호한 결합이 필요 없는 것이 극히 귀중하다. AI 단결점에 TiC 용접등, Mo 단결점 및 W 단결점에 전자빔융접(EB)을 적용한 경우의 조각 및 용접이온의 기계적특성에 대해 검토되어 있으나, 응용부와 접합부의 경계를 따라 조달한 기공이 관찰 되고, 응용부의 경계부에는 결합이 제어된 것이 보고되고 있다. 따라서, 단결점의 응용접합법을 적용할 경우, 응용부의 단결점화가 이루어지지 않아 단결점 본래의 강화효과가 응용부에서 유지될 수 없기 때문에 응용접합법의 적용은 본질적으로 귀중하다.

3.2 기계적 접합법

접착제는 항공·우주기기 분야에서 사용되는 금속 구조용 접착제의 경우, 빌리강도, 전단강도는 상당히 높은 값을 나타내나, 그 대부분은 내열성이 최대 700~800K 정도이다. 현재까지 약 1,300K까지 진하는 접착내열성을 나타내는 방열형 접착제(무기접착제)도 개발되고 있으나, 내응력, 내수·내습성 및 기기성에 있어서 문제로 남아 있다.

3.3 계면접합법

3.3.1 마찰융합법

마찰융합법은 burr의 발생, 접합면에서 개체물에 의한 접합이온의 효과가 문제가 되고 있다. 단 결점점의 접합에서는 최대 문제인 접합방위의 제어가 어려워서 때문에 접합부의 단결점화는 매우 귀중하며, 단결점점 접합의 적용에는 문제가 된다.

3.3.2 브레이징법

단결점점의 브레이징에 있어서는, 고용접 단결점체를 Pt, Pd-20%Ag, Au-8%Pd 등의 귀금속체 금속 및 V, Zr, Mo-40%Ru 등의 고용접 금속의 인지접금속을 사용해서 브레이징한 접합부의 조각, 기계적특성 등에 관계에서 검토되고 있다. Table 2는 Mo, W 등의 고용접 단결점의 브레이징에 대해서 실용적 혹은 실험적으로 사용되고 있는 각종 인지접금속을 나타낸 것이다.

<table>
<thead>
<tr>
<th>Table 2 Filler metals used for brazing of single crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition (mass%)</td>
</tr>
<tr>
<td>Au-base</td>
</tr>
<tr>
<td>Cu-base</td>
</tr>
<tr>
<td>Cr-base</td>
</tr>
<tr>
<td>Mo-base</td>
</tr>
<tr>
<td>Mo-base</td>
</tr>
<tr>
<td>Mo-base</td>
</tr>
<tr>
<td>Ni-base</td>
</tr>
</tbody>
</table>

Mo 단결점에 브레이징한 경우, 모재와 브레이징층의 경계근방에 σ상, ε상 등의 금속간화합물이 생성되고, 브레이징층 열처리를 한 경우에도 금속간화합물 및 조밀한 기공이 형성되는 것이 보고되고 있다. 대표적으로 Mo 단결점 브레이징부의 기계적특성을 보면, Fig. 3에 보이는 바와 같이, 모재에 비해 접합부의 파단 응력, 굴절면성 모두 상당히 열화하는 것을 알 수 있고.

![Fig. 3 Changes in bend angle and fracture stress with brazing temperature for the brazed joints of Mo single crystal](image-url)

Journal of KWS, Vol. 18, No. 6, December, 2000
파탄은 모두 브레이징 계면에서 일어난다고 보고되고 있다. 또한, 브레이징 온도가 비교적 높은 경우에는 브레이징중에 단결점이 가정하는 것, 인서트금속 저체의 고온강도가 단결점에 비해 높이는 것 혹은 브레이징후 사용중에 인서트금속과 모재의 반응에 의한 국부적인 재결정을 일으키는 것 등의 문제점이 지적되고 있다. 따라서, 현재까지 단결점제의 브레이징 제작에 있어서 모재와 동등한 기계적특성을 가지는 접합이음부를 얻는 것은 곤란하다고 말할 수 있다.

3.3.3 고성능접합법
고성능접합법은 가열 및 가압에 의해 접합제에 서 원소를 직접 고성능시키는 것에 의해 접합하는 방법이기 때문에 단결점제의 접합에 관해서도 접합부의 단결점화를 포함하여 양호한 접합이 달성할 가능성이 낮다.

Cu단결점제를 고성능접합법의 접합, 접합술 작업에 서는 접합제매가 일정온도로 존재하나, 접합부 열처리에 의해 접합제매가 이동 혹은 소형하여 접합부가 단결점제로 변환하게 되면 단결점이므로 접합하는 것은 곤란하다고 되어 있다. Mo단결점제에 고성능접합법을 행할 경우에는 접합면에서의 변형을 충분히 제거한 후 접합면에 접합제가 일어나지 않게 접합이 가능하나, 접합면에서의 원자의 정향성이 접합이음부의 강도에 크게 영향을 미친다. 또한, Ni기 단결점 초내열합금인 TMS26의 고성능접합법에 대해서 보면, Mo단결점에 비해 재결정의 가능성이 낮고, 원자간 단결점으로 접합이 가능하다. 접합면은 보통 화합물 및 석출물이 형성되어 접합이음부 특성을 저하하는 부분도 있다.

이와 같이, 일반적으로 단결점 접합의 고성능접합법에 있어서는 접합이음부의 기계적특성을 모재와 동일해제에 이루지 못하는 것이 현실이다. 또한, 접합면의 표면조도가 얇게 요구되고, 높은 가압력에 의한 모재의 변형, 접합시의 장시간, 접합분위기의 경밀한 제어 등의 이유 때문에 실용부품에 적용하기에는 문제가 있다고 예상된다.

한편, 단결점제의 고성능접합법에는 접합과정 및 접합부의 특성이 접합면에서의 결정방위계획에 의해 크게 좌우된다. Fig. 4에는 Mo단결점에 고성능접합법이 행할 경우, 접합부 강도에 미치는 접합면에서의 결정방위계획의 영향을 나타낸다. 접합면이 (121)면 및 (025)면 모두 접합강도는 접합면의 전하각에 크게 의존하고, 회전각 10도 이하에서는 접합강도가 크다. 그 이상이 되면 접합강도는 매우 낮은 것을 알 수 있다. 접합은 열처리한 것에 의해 접합이음부의 강도는 항상하는 것을 알 수 있다. 또한, (111)화합제를 가지는 SI방결점 및 전환임계 및 대칭결점임계를 가지는 Mo방결점의 고성능접합법에 있어서도 접합강도 및 접합강도는 회전각 및 대칭결점에 크게 의존하는 결과를 보고되고 있다.

Fig. 4 Relation between twist angle and the tensile strength of diffusion bonded joints

3.3.4 액상화접합법
액상화접합법은 인서트금속중인 B, P, Si등의 용접저용상이 모재에 확산하여 동등용화하는 동등용화상에 의해 브레이징이음부에서 문제가 되는 취약한 금속간화합물이 형성되기 어렵고, 모재와 동일결점방법의 교합이 형성하는 에피데탈성장이 가시되기 때문에 단결점제의 접합시에 가장 중요한 접합부의 단결점화를 달성시킬 수 있는 가능성이 높다. 또한, 접합력, 보안형, 접합강도가 가능하고, 접합후 균질화처리에 의하여 모재와 동등한 접합강도를 가지는 고성능이음부를 얻을 수 있다.

현재까지, Ni기함금의 액상화접합법에 관해서는 HastelloyX, InconelX-750, 713C, Udimet500, IN738LC, TM49, Mar-M247, IN100, MA754등의 Ni기 단결점 초내열합금을 중심으로 많은 연구가 진행적으로 행해지고 있다. 지금까지의 연구에 의하면, 접합부의 접합강도는 거의 모재 수준이거나 접합부의 저항이 낮고, 크리스-파단특성 및 피로특성이 모재 대비에 달하지 않는 것, 기계적특성을 떨어지나 나타나는 것으로부터 신뢰성의 보증이 문제가 되고 있다. 그 원인에 대해서는 접합부에 형성되는 접합결합이나 개
제품 혹은 불완전한 균일한처리에 의한 합금원소의 불균일성들이 관여하고 있는 것으로 예상된다. 액상속성
접합에 사용되는 대표적인 인서트금속의 화학조성을 Table 3에 나타낸다.

<table>
<thead>
<tr>
<th>Chemical composition (mass%)</th>
<th>Type</th>
<th>Melting point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-3.7B-15.5Cr</td>
<td>CA</td>
<td>1338</td>
</tr>
<tr>
<td>Ni-4.0B-20.0Cr</td>
<td>DA</td>
<td>1302</td>
</tr>
<tr>
<td>Ni-4.5B-21.8Cr</td>
<td>DA</td>
<td>1313</td>
</tr>
<tr>
<td>Ni-4.5B-15.0Cr</td>
<td>P</td>
<td>1353</td>
</tr>
<tr>
<td>Ni-3.2B-20.4Cr</td>
<td>DA</td>
<td>1278</td>
</tr>
<tr>
<td>Ni-3.5B-15.0Cr-15.0Ni-5.0Mo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ni-3.5B-15.0Cr-15.0Ni-5.0Mo</td>
<td>5.5%</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical composition (mass%)</th>
<th>Type</th>
<th>Melting point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-B-Si</td>
<td>CA</td>
<td>1253-1313</td>
</tr>
<tr>
<td>Ni-2.13-7.5Si</td>
<td>CA</td>
<td>1233-1298</td>
</tr>
<tr>
<td>Ni-2.13-2.9Si</td>
<td>DA</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical composition (mass%)</th>
<th>Type</th>
<th>Melting point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-B-Si-Cr</td>
<td>DA</td>
<td>1108</td>
</tr>
<tr>
<td>Ni-3.5B-2.98-21.4Cr</td>
<td>P</td>
<td>1244-1274</td>
</tr>
<tr>
<td>Ni-5.0B-4.56-7.00Cr</td>
<td>CA</td>
<td>1234-1213</td>
</tr>
<tr>
<td>Ni-3.2B-4.56-7.00Cr</td>
<td>CA</td>
<td>1243-1273</td>
</tr>
</tbody>
</table>

CA: Commercial amorphous foil, DA: Newly developed amorphous foil, P: Powder

현대, 단결정 초내열합금의 접합에는, 접합부에 일
재가 형성될 경우, 단결정 초내열합금은 일체강화원소
가 함유되어 있지 않기 때문에 접합이용부의 기계적특
성에 현저하게 저하된다. Fig. 5에 보이는 바와 같이,
단결정에서 제결정이 발생한 경우에는 그 수명저하가
현저하다. 따라서, 단결정의 접합에서도 접합선처리
조건을 검토하고, 접합면의 제결정 방지를 확보한 후에 접합을 행하는 것이 중요하다.

Fig. 5 Influence of the recrystallization on the creep rupture life

Fig. 6 Tensile strength of CMSX-2 TLP bonded joints

Fig. 7 Creep rupture strength of CMSX-2 TLP bonded joints

Ni기 단결정 초내열합금을 액상속성접합에 사용시에는 다양한 형태의 생성성이
생출·식출하여 접합부 특성에 큰 영향을 미치는 것
으로 알려져 있다. NASSAIR100 단결정 초내열합금을
Ni기 인서트금속으로 접합한 경우(30), 접합한 상태에서
는 접합부 W주성분의 형성 식출물이 생장하여 인장
시험시 식출물이 따라서 파편이 일어나, 접합후열처리
를 실시하면 접합부에서의 식출물이 소멸하여 접합
부 효율이 향상된다고 하고 있다. 또한, Ni기 단결정
초내열합금인 CMSX-2, CMSX-4의 액상속성접합에
서는 양 접합 모계의 결정방위를 일치시킨 동방위 접
합에에서는 Fig. 6 및 Fig. 7에 나타난 바와 같이, 고
온강특성, 크리프-파단강도, 고온저세irmingham도 등
의 고온에서의 기계적특성이 모계와 동등한 수준한
접합부를 얻을 수 있다고 보고하고 있다(29,30).
4. 결 론

항공 · 우주기기의 고온 · 고압부에 적용할 미래의 고온재료로서 각광을 받고 있는 Ni기 단결정 초내열합 금은 항후 고성능화, 고효율, 고신뢰성을 가지는 용접 · 접합기술의 확립 및 그 활용이 절실히 요구된다.

단결정 초내열합금을 접합에 있어서, 재료 본래의 특성을 그대로 유지하기 위해서는 접합부는 조립 및 조성 모두 모의와 동등한 것이 요구된다. 즉, 접합부의 단결정은 대단히 중요한 과제이다. 따라서, 단결정 계의 접합에 있어서는 접합에 따른 재질변화를 극소화 할 수 있고, 정밀한 접합이 가능한 접합법, 즉, 브레이징법, 고성확산접합법, 엑상확산접합법과 같은 계면접
합법의 적용이 필요하다. 그 중에서도 엑상확산접합법은 접합부의 단결정 화학적 양호한 접합이음부 특성을 가
할 수 있는 가장 유효한 접합방법이라고 판단된다.

참 고 문 현

1. F.L.Versnyder, L.W.Sink and B.J.Pearcey: Modern Casting, 12(1967), p68
2. 原田, 横川, 大野, 山崎, 山崎: 耐熱金屬材料第 123委員会研究報告, 34-3(1993), p303
4. 太田, 中川, 大友, 資質: 日本金属学会誌, 24-6(1985), p462
10. 大野, 原田: 日立金屬技術, 6(1986), p9
11. 松本, 菊崎, 木村, 森永, 湯川: 鉄と鋼, 78-4(1992), p658
13. 大田, 中川, 大友: 鉄と鋼, 76-6(1990), p940
17. 木村: 溶接学会誌, 53-2(1984), p86
19. 小野: 鉄と鋼, 6(1990), p44
22. 桃野, 木村: 日本金屬学会誌, 42-3(1978), p211
23. 大橋, 管: 溶接学会論文集, 10-1(1992), P53
25. 米, 大友, 久保, 京: 日本金屬学会誌, 47-7(1983), p546
27. 鈴村, 恩澤, 田村: 溶接学会誌, 49-7(1980), p462
30. 金, 吉田: 大韓焊接技術会, 18-3(2000), p106
31. 金, 朴, 東田, 淺井, 古川: 日本溶接学会論文集, 18-1 (2000), p133

* 金, 吉田
* 韓国MOBIS(주) 기술연구소
* 金, 吉田: 大韓焊接技術会, 18-3(2000), p106
* e-mail: aepkim@mobis.co.kr