국내 용접기술교육 및 검정체계 연구(II)

황신호

A Study on Korean Welding Education and Qualification System(II)

Sun Hyo Hwang

1. 서론

제1부에서는 선진국의 경우 유럽지역을 중심으로 국제적 용접기술인력 교육 및 검정체계에 대하여 기술한 바 있다. 국가기술� алкогол에 의한 용접기술인력 교육·훈련 및 검정체계는 정기간 관세에 의해서 운영되므로 전문성과 빠르게 증가하고 있고, 공급자 중심의 교육으로 유효되어 왔다. 이로 인하여 자격 보유자가 국제적으로 인정되지 못할 뿐만 아니라, 국내 기업에서도 인정되지 못하는 현상이 발생하였다.

이것은 비단 용접기술분야만의 문제가 아니고 국내 전체 직업교육 및 검정체계가 갖고 있는 문제이다. 자격기준법이 제정되어 민간자격 발급의 길은 열여 놓았으나 실질적으로는 대다수의 공업기술분야에서 국민의 생활·견고성을 보호한다는 명목으로 민간자격 발급이 금지되어 있어 민간자격 활용의 길이 천착하게 되어 있다.

대한용접학회에서는 이와 같은 상황에서 10년 전부터 선진국의 자격제도를 도입하여 민간자격을 발급하고 있으며 동시에 선진국에 의해 국제공인도 받고 있다. 또한 민간자격의 정부공인을 받기 위해 노력하고 있다.

최근에는 용접기술인력에 대한 ISO규격(대한용접학회 용접기술인력 규정과 동일)을 KS 규정화하고 있는 중이다.

본 보고에서는 대한용접학회의 교육 및 검정체계, KS-ISO용접관련 규격 제정 및 KWS 자격의 민간자격 정부공인에 대하여, 그리고 KWS 자격의 향후 추진 및 활용 방향에 대해서 기술한다.

2. 대한용접학회의 용접기술인력 교육 및 검정체계

1991년부터 대한용접학회(KWS)는 유럽용접업인(CWE, European Welding Engineer)의 교육 및 검정 규정과 동일한 규정을 설치하고 매년 1회 자격증(KWE, Korean Welding Engineer)을 발급하여 왔다.

1996년에는 EWF가 KWE를 EWE와 동일한 자격으로 인정하여 주었다. KWE 자격의 국제공인을 계기로 KWS는 EWF의 품질관리서(QM, Quality Manual)를 제정하여 발급하고 KWS는 EWF 수준으로 구축하였다. KWS내에서는 수업위원회(1)를 설치하여 각 자격의 교육 규정들을 검토하도록 하였으며, 또한 검정위원회(2)를 설치하여 각종 시험규정 작성 및 자격증 발급 업무를 수행하고 있다. 검정위원회는 대수(50% 이상)가 기업출신 인사로 구성되어야 하며, 시험내용 및 관리가 수요자의 기업의 의도에 의하여 진행되도록 하였다. 검정위원회 산하에는 시험위원(3)을 설치하여 각종 시험업무를 진행하도록 하였으며, 시험위원 중에서 일부는 경력출신 인사로 구성하였다.

검정위원회는 학회와는 별도로 독립벽설계로 운영하다가 도중 충족하였으며, 또한 산하에 사무국을 설치하여 교육 및 점검관련 업무를 수행하도록 하였다.

현재 KWS 내에 설치된 각종 자격종류는 Table 1과 같다.

KWS는 KWS 교육규정에 따라 교육을 수행하고자 하는 교육기관에 대해서는 교육기관 지정 신청서를 제출하게 하고, 이를 심사한 후 규정에 따른 자격증의 발급기관에 대해서는 부분 혹은 종합교육기관으로 지정하고 있다.

지정받은 교육기관은 KWS의 과정 교육규정(교육내용 및 시간)에 따라 교육을 실시하고, KWS검정위원회는 시험을 실시하여 시험결과에 따라 각종 자격증을 발급한다. 현재까지 한밭대학교, 천안공업대학, 한국항공대학교는 KWS 종합교육기관으로 지정되었다. Table 2는 KWS 용접기술자 4등급 및 용접검사자 4등급 자격의 교육내용과 시간을 보여주고 있다.

지급까지 용접전문기술자 교육은 매년 1회 15회 실시하였으며, 약 200여명을 배출하였다. 이외에도 용
Table 1 Welding certificates in Korean Welding Society

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Minimum education duration (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>용접기술사 (Welding Engineer)</td>
<td></td>
</tr>
<tr>
<td>용접기술자 KWE, Korean Welding Engineer</td>
<td>446</td>
</tr>
<tr>
<td>용접기술자 KWT, Korean Welding Technologist</td>
<td>340</td>
</tr>
<tr>
<td>용접기술자 KWS, Korean Welding Specialist</td>
<td>222</td>
</tr>
<tr>
<td>용접지도사 KWP, Korean Welding Practitioner</td>
<td>143</td>
</tr>
<tr>
<td>용접검사사 (Welding Inspection Personal)</td>
<td></td>
</tr>
<tr>
<td>용접검사 KWE, Korean Welding Inspection Engineer</td>
<td>263</td>
</tr>
<tr>
<td>용접검사 KWT, Korean Welding Inspection Technologist</td>
<td>246</td>
</tr>
<tr>
<td>용접검사 KWS, Korean Welding Inspection Specialist</td>
<td>188</td>
</tr>
<tr>
<td>용접검사 KWP, Korean Welding Inspection Practitioner</td>
<td>105</td>
</tr>
<tr>
<td>용접교사 (Welding Instructor)</td>
<td></td>
</tr>
<tr>
<td>가스용접교사 KWIN-Gas, Korean Gas Welding Instructor</td>
<td>216</td>
</tr>
<tr>
<td>수동파라어휘용접교사 KWIN-MMA, Korean MMA Welding Instructor</td>
<td>216</td>
</tr>
<tr>
<td>미그용접교사 KWIN-MIG/MAG, Korean MIG/MAG Welding Instructor</td>
<td>216</td>
</tr>
<tr>
<td>TIG용접교사 KWIN-TIG, Korean TIG Welding Instructor</td>
<td>216</td>
</tr>
<tr>
<td>용접사 (Welder)</td>
<td></td>
</tr>
<tr>
<td>가스용접사 KWIN-Gas, Korean Gas Welder</td>
<td>14 weeks</td>
</tr>
<tr>
<td>수동파라어휘용접사 KWIN-MMA, Korean MMA Welder</td>
<td>18 weeks</td>
</tr>
<tr>
<td>미그용접사 KWIN-MIG/MAG, Korean MIG/MAG Welder</td>
<td>10 weeks</td>
</tr>
<tr>
<td>TIG용접사 KWIN-TIG, Korean TIG Welder</td>
<td>12 weeks</td>
</tr>
<tr>
<td>스타트 용접사 (Stud Welder)</td>
<td></td>
</tr>
<tr>
<td>스타트 용접사 KSW-1, Korean Stud Welder Level1</td>
<td>1 week</td>
</tr>
<tr>
<td>스타트 용접사 KSW-2, Korean Stud Welder Level2</td>
<td>1 week</td>
</tr>
<tr>
<td>아크로봇작업자 (Arc Robot Operator)</td>
<td></td>
</tr>
<tr>
<td>아크로봇작업자 KARO-1, Korean Arc Robot Operator Level1</td>
<td>1 week</td>
</tr>
<tr>
<td>아크로봇작업자 KARO-2, Korean Arc Robot Operator Level2</td>
<td>1 week</td>
</tr>
</tbody>
</table>
Table 2 Contents and durations of different welding engineers and inspection personals in Korean Welding Society

(2a) Welding process and equipment

<table>
<thead>
<tr>
<th>Contents</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KWE</td>
</tr>
<tr>
<td>1.1 General introduction to welding technology</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Oxy-gas Welding</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Special oxy-gas processes</td>
<td>1</td>
</tr>
<tr>
<td>1.4 Electrolytics</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Thc arc</td>
<td>4</td>
</tr>
<tr>
<td>1.6 Power sources for arc welding</td>
<td>4</td>
</tr>
<tr>
<td>1.7 Introduction to gas-shielded arc welding</td>
<td>2</td>
</tr>
<tr>
<td>1.8 Tungsten/inert gas welding</td>
<td>6</td>
</tr>
<tr>
<td>1.9 MIG/MAG welding</td>
<td>8</td>
</tr>
<tr>
<td>1.10 Manual metal arc welding</td>
<td>10</td>
</tr>
<tr>
<td>1.11 Submerged-arc welding</td>
<td>6</td>
</tr>
<tr>
<td>1.12 Resistance welding</td>
<td>8</td>
</tr>
<tr>
<td>1.13 Other welding processes</td>
<td>10</td>
</tr>
<tr>
<td>1.14 Cutting and other edge preparation processes</td>
<td>4</td>
</tr>
<tr>
<td>1.15 Surfacing</td>
<td>2</td>
</tr>
<tr>
<td>1.16 Fully mechanized processes and robotics</td>
<td>6</td>
</tr>
<tr>
<td>1.17 Brazing and soldering</td>
<td>4</td>
</tr>
<tr>
<td>1.18 Joining processes for plastics</td>
<td>4</td>
</tr>
<tr>
<td>1.19 Joining processes for advanced materials</td>
<td>2</td>
</tr>
<tr>
<td>1.20 Welding laboratory</td>
<td>10</td>
</tr>
<tr>
<td>Sum</td>
<td>102</td>
</tr>
</tbody>
</table>

(Unit : hour)
KWS는 2001년 2월 한국직능직업능력개발원(직능원)에
KWS 규정에 있는 기술자격 종목 중 신청자격이 있는
용접전문기술자(KWE), 용접교사(KWIN), 용접기능사
(KW) 지식 종목 등에 대한 민간자격 정부공인 신청을
하였습니다. 그러나 직능원에서는 KWS자격 신청등록
현장실사 등 심화심사 대상에서 제외하고, 이를 KWS
에 통보한 바 있다. 실사 대상에서 제외된 이유는
KWS자격들이 용접기술 관련 기술자격이어서, 국민의
생활·건강·안전과 관련되어 있고 국가기술자격법(국
기법)에 의해서 민간자격 반영이 금지된 기술자격이라
는 것이었다. 그러나 기기법에 명시된 민간자격 발급급
지 용접기술자격증(용접기술자·기사·산업기사·기술
장·용접기능사·기술용접기능사·특수용접기능사)은
KWS 민간자격들과 명칭과 내용이 판이하게 다르기 때
문에 종 급지조항을 적용할 수 없을 것으로 판단되나.
유사자격급지조항(국기법 제5조)에 의해 모든 용접기술
자격은 유사자격으로 취급하여 민간자격 발급이 금지된
것으로 해석하고 있다.

현재 KWS는 KWS 자격체계가 장기간 선진국들과의
교류에 의해서 선진국들에 의한 중앙 현상단에 맞추고
많은 경험이 보유하고 있음으로 현재의 민간자격 발급

<table>
<thead>
<tr>
<th>Materials</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>KWE</td>
<td>KWT</td>
</tr>
<tr>
<td>2.1 Manufacture and designation of steels</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Testing materials and the weld joint</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Structure and properties of pure metals</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Alloy and phase diagrams</td>
<td>6</td>
</tr>
<tr>
<td>2.5 Iron-Carbon alloys</td>
<td>4</td>
</tr>
<tr>
<td>2.6 Heat treatments of base materials and welded joints</td>
<td>4</td>
</tr>
<tr>
<td>2.7 Structure of the welded joint</td>
<td>4</td>
</tr>
<tr>
<td>2.8 Plain carbon- and Carbon-manganese steels</td>
<td>6</td>
</tr>
<tr>
<td>2.9 Cracking phenomena in steels</td>
<td>4</td>
</tr>
<tr>
<td>2.10 Fine-grained steels</td>
<td>4</td>
</tr>
<tr>
<td>2.11 Thermomechanically treated steels</td>
<td>2</td>
</tr>
<tr>
<td>2.12 Application of structural and high strength steels</td>
<td>2</td>
</tr>
<tr>
<td>2.13 Low-alloy steels for very low temperature applications</td>
<td>4</td>
</tr>
<tr>
<td>2.14 Low alloy creep resistant steels</td>
<td>4</td>
</tr>
<tr>
<td>2.15 High-alloyed (stainless) steels</td>
<td>8</td>
</tr>
<tr>
<td>2.16 Introduction to corrosion</td>
<td>6</td>
</tr>
<tr>
<td>2.17 Introduction to Wear</td>
<td>2</td>
</tr>
<tr>
<td>2.18 Protective layers</td>
<td>4</td>
</tr>
<tr>
<td>2.19 Creep resistant and heat resistant steels</td>
<td>2</td>
</tr>
<tr>
<td>2.20 Cast irons and steels</td>
<td>4</td>
</tr>
<tr>
<td>2.21 Copper and copper alloys</td>
<td>4</td>
</tr>
<tr>
<td>2.22 Nickel and nickel alloys</td>
<td>4</td>
</tr>
<tr>
<td>2.23 Aluminum and aluminum alloys</td>
<td>6</td>
</tr>
<tr>
<td>2.24 Other metals and alloys</td>
<td>2</td>
</tr>
<tr>
<td>2.25 Joining dissimilar materials</td>
<td>4</td>
</tr>
<tr>
<td>2.26 Metallographic examinations</td>
<td>6</td>
</tr>
</tbody>
</table>

Sum 110 80 45 22 52 44 21 14
(2c) Construction and design

<table>
<thead>
<tr>
<th>Contents</th>
<th>Certificates</th>
<th>KWE</th>
<th>KWT</th>
<th>KWS</th>
<th>KWP</th>
<th>KWIE</th>
<th>KWIT</th>
<th>KWIS</th>
<th>KWIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Fundamentals of the strength of materials</td>
<td></td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.2 Basics of weld design</td>
<td></td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.3 Design principles of welded structures</td>
<td></td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.4 Joint design</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.5 Introduction to fracture mechanics</td>
<td></td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.6 Behaviour of welded structures under different types of loading</td>
<td></td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.7 Design of welded structures with predominantly static loading</td>
<td></td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.8 Behaviour of welded structures under dynamic loading</td>
<td></td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.9 Design of dynamically loaded welded structures</td>
<td></td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.10 Design of thermodynamically loaded welded structures</td>
<td></td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.11 Design of structure in aluminum and its alloys</td>
<td></td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.12 Reinforcing steel welded joints</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>40</td>
<td>64</td>
<td>22</td>
<td>8</td>
<td>30</td>
<td>21</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

(2d) Fabrication

<table>
<thead>
<tr>
<th>Contents</th>
<th>Certificates</th>
<th>KWE</th>
<th>KWT</th>
<th>KWS</th>
<th>KWP</th>
<th>KWIE</th>
<th>KWIT</th>
<th>KWIS</th>
<th>KWIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction to quality assurance in welded</td>
<td></td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>constructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Quality control for manufacture</td>
<td></td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.3 Welding stresses and distortion</td>
<td></td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.4 Plant facilities, welding jigs and fixtures</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4.5 Health and safety</td>
<td></td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4.6 Measurement, control and recording in welding</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4.7 Non destructive testing</td>
<td></td>
<td>20</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.8 Economics</td>
<td></td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.9 Repair-welding</td>
<td></td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4.10 Fitness for purpose</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4.11 Case studies</td>
<td></td>
<td>40</td>
<td>28</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>110</td>
<td>81</td>
<td>50</td>
<td>32</td>
<td>22</td>
<td>22</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

(2e) Practical training / Inspection

<table>
<thead>
<tr>
<th>Contents</th>
<th>Certificates</th>
<th>KWE</th>
<th>KWT</th>
<th>KWS</th>
<th>KWP</th>
<th>KWIE</th>
<th>KWIT</th>
<th>KWIS</th>
<th>KWIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc welding practical training</td>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(Gas, MMA, TIG, MIG/MAG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstration of special welding process</td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Material testing</td>
<td></td>
<td>120</td>
<td>120</td>
<td>80</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>소 계</td>
<td></td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>120</td>
<td>120</td>
<td>80</td>
<td>40</td>
</tr>
</tbody>
</table>
금지 기술부류에서 제외하고 정부공인을 해주음을 요청하고 있다. 노동부에서도 긍정적으로 검토하고 있으며 조만간 제외되어 정부공인이 될 것으로 기대하고 있다.

4. 종합도론

현재 우리나라의 대학교육과 직업훈련교육의 불균형에 의하여, 다시 말하여 대학교육의 비견상적인 비대화 및 직업훈련교육의 왕래화에 의하여 심각한 고통을 받고 있다. 직업훈련교육의 선진화(양 및 질적개선)가 이루어져야 대학교육의 선진화도 이루어질 것임으로, 직업훈련교육의 선진화를 시급히 추진하여야 한다.

현재의 국내 국가기술 자격제도는 현재의 국내 공업 규모 및 수준을 유지, 발전시키며 국제 경쟁력을 확보하는데 있어 요인이 되고 있다. 이것은 전주의 교육 및 경제체계가 장기적으로 지속되면서 공급자 중심의 교육이 되고, 수요자인 기업에서 직접적으로 필요한 인력을 양성하지 못하고 있기 때문이다.

이점을 보완하기 위하여 기술기본법을 제정하여, 민간자격 발급 및 정부 공인을 할 수 있는 것을 열어 놓았으나, 공업제품 생산에 필요한 대부분의 기술 분야는

![Fig. 1 Korean TIG pipe welder certificate](image1)

Fig. 1 Korean TIG pipe welder certificate

![Fig. 2 Relations between KWS, IJW, DVS, SLV, Hanbat National University and Ministry of Labor](image2)

Fig. 2 Relations between KWS, IJW, DVS, SLV, Hanbat National University and Ministry of Labor

국민의 생명·건강·안전을 보장해야 한다는 민법에서 민간자격 발급 자체를 금지하고 있다.

융합기술부야도 같은 기술분야에 포함되어 있으며, 국가의 자가 행할 수 없는 융합기술자로 융합기술자, 기능, 기술, 산업기술, 전기융합기술, 가스융합기술, 특수융합기술자 자격을 정하고 있다(국가기술자격법 시행령 제 13조의 2).

또한 이의 모든 융합 관련 민간자격의 발급도 수직자적 급시조합(국가기술자격법 제 15조)에 의해 그 발급이 금지되고 있다.

그러나 현재의 융합기술부야 국가기술 자격들은 대부분 수요자인 기업에서도 인정받지 못할 뿐만 아니라, 국제적으로도 인정받지 못하고 있어 기술자로서의 기능을 제대로 하지 못하고 있다.

이와 같은 상황을 타개하기 위하여 대한융합학회는 1991년부터 각종 융합기술 민간자격들의 교육 및 결정(융합융합연맹 "EWF"의 것과 동일) 규정들을 단계적으로 제정하여, 교육 시험 및 자격증 발급을 신속하여 왔다. EWF에서는 이미 KWS 자격 중 융합전문가, 융합기술자 2급, 융합기술자 1, 2, 3, 4급, 각종 융합 기능사 자격증을 인정하며, 대부분의 KWS 자격들은 이미 국제적으로 공인받고 있다.

KWS 교육 및 경정체계는 국제융합물질보증 기준규격 (ISO 3834, 현재 KS 규격화 진행 중), 국제 융합 기술자 규격(ISO 14731, 현재 KS 규격화 진행 중),
국제 용접기능사 규격 (ISO 9606, 현재 KS 규격화 진행 중)에 따라서 제정된 것이기 때문에, 우선 각종 자격들의 기업현장에서의 수행작무가 국내 기준에 따라서 명확히 규정되어 있다. 따라서 특정 자격증 소지자 가 현장에서의 직무수행에 필요한 교육(동일한 내용 및 시간)을 실시할 수 있게 되고, 해당 교육내용에 대한 구체적인 시험을 실시하여 해당 자격증을 발급할 수 있게 되었다.

KWS는 검정위원과 그 사무국에 서험위원, 그리고 사무국을 별도로 설치하여 독립된 단체로 운영하고 있다. 동 위원회의 규정은 국가가 정한 대로 동일한 방법으 로 하여 KWS 지역의 수요자들의 기업의 의도에 따라 운영되도록 하였다.

KWS는 2001년초 직업능력개발원에 용접기술사, 용접교사, 용접기사에 대한 민간자격 정부공인 신청을 하였으나, 법률상의 문제로 실화심사 자격이 진행되지 않은 채 거부되었다.

KWS는 여러 관련기관 및 부처에 현행 국가자격의 문제점을 거론하고, 문제의 정점적 해결을 위해서는 국가자격과 민간자격을 동시에 이원적으로 사용하는 방안을 제안한 바 있다. 이렇게 함으로서 양 자격제도가 갖고 있는 상당점을 상호 보완시키고, 신의의 경쟁을 유발하여 용접기술사의 직업준비 교육 및 검정체계의 신설화를 이룩할 수 있을 것이다.

KWS 지역의 한편한 국제화에 대해서는 KWS가 국제용접협회(IW, International Institute of Welding)의 회원으로 가입하고, IW의 국가기관(ANB, Authorized National Body)으로 지정되어, IW의 각종 용접기술 자격증을 발급하는 것이 필요하다. 현재 KWS 자격과 IW 자격은 체계 및 내용이 동일함으로 정부는 KWS 및 IW 자격 모두를 공인하여 활용할 수 있다.

KWS는 10년 전부터 국제 공인된 선전국 수준의 민간자격제도를 운영하고 있으나, 내 기술단위는 아직 그 예가 없을 정도로 민간자격 발급을 위한 준비가 되어 있지 않다. 이와 같은 상황을 감안하여 정부는 KWS 자격제도를 국내 기술사에 믿을 만한 체계로 삼고, 시범적으로 실시해 본 필요가 있다.

현재 정부에서도 민간자격제도를 각종 산업기술분야에 확대 적용할 것을 공정적으로 검토하고 있으며, KWS 자격의 정부 공인도 곧 이루어질 수 있을 전망이 다.

5. 결 련

국내 용접기술분야는 250,000명 이상의 용접기능사 자격증이 발급될 정도로 큰 기술인력을 필요로 함에도 불구하고, 국가기술자들이 국내 기업현장에서 뛰어난 기술자인 것에 대한 인정받지 못하고 있어 이에 대한 근본적인 대책이 필요하다.

대한용접협회에서는 이를 대표적인 상황으로 간주하여 유럽 용접협회 및 국제협회와 공동한 교육 및 검정체계를 구축하고 각종 용접기술 민간자격을 발령하고 있으며, 국가공인(유럽공인)으로 공인되고 있으나, 우리나라의 정부에 의해서는 공인이 되지 못하고 있다.

동 지역이 정부공인에 되어야 현행 국가자격과 마찬가지로 동등한 법적 대접을 받게 되고, 그래야 동 지역이 용접관련 개발명목들에 의해 활용될 수 있기 때문이다.

용접기술분야는 산업기술 자격들 중에서 유연하게 선진국 수준으로 준비된 자격이다. 따라서 바로 정부공인 이 되더라도 퇴동의 혼란 없이 잘 운영될 수 있다. 정부는 대한용접협회의 민간자격 체계를 시범사업으로 채택하여 실시할 필요가 있다. 이것이 성공적으로 진행되면 그 기술분야에 확대 적용할 수 있을 것이다. 정부는 민간자격제도를 운영함에 있어서 전면에 나서지 않고 관련 기술 민간자격 운영단체(기관수도)의 관리 감독을 철저히 함으로써 기술교육 및 자격체계의 중점 향상에 기여할 수 있다.

정기적으로 민간자격체계가 뛰어나리면 정부지원 없이 독립적체계로 운영될 수 있을 것이다.

참고 문헌
1. 대한용접협회 : 용접기술인력 교육 및 검정을 위한 품질지침서(Quality Manual), 대한용접협회, 2001, (in Korean and English)
2. 대한용접협회 : 교육위원회 규정, 대한용접협회, 2001, (in Korean and English)
3. 대한용접협회 : 검정위원회 규정, 대한용접협회, 2001, (in Korean and English)
4. 대한용접협회 : 시험위원회 규정, 대한용접협회, 2001, (in Korean and English)
5. KWS 1101-KWS 1201 : 용접전문기술자 교육 및 시험 규정, 대한용접협회, 1998, (in Korean and English)
6. KWS 1102 KWS 1202 : 용접기술자 1급 교육 및 시험 규정, 대한용접협회, 1996, (in Korean and English)
7. KWS 1103-KWS 1203 : 용접기술자 2급 교육 및 시험 규정, 대한용접협회, 1996, (in Korean and English)
8. KWS 1109-KWS 1209 : 용접지도자 교육 및 시험 규정, 대한용접협회, 1996, (in Korean and English)
9. KWS 1104-KWS 1204 : 용접감사자 1급, 2급, 3급, 4급 교육 및 시험 규정, 대한용접협회, 1996, (in Korean and English)
10. KWS 1106 KWS 1206 : 수동원목이크용접교사 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
11. KWS 1107 KWS 1207 : MIG/MAG 용접교사 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
12. KWS 1108-KWS 1208 : TIG 용접교사 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
13. KWS 1105-KWS 1205 : 가스융접교사 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
14. KWS 1111-KWS 1210 : 가스융접교사 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
15. KWS 1112-KWS 1210 : 수동파복이크용접교사 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
16. KWS 1113 KWS 1210 : MIG/MAG 용접교사 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
17. KWS 1114 KWS 1210 : TIG 용접교사 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
18. KWS 1115-KWS 1215 : 스티드 용접교사 1급, 2급 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)

19. KWS 1116-KWS 1216 : 아크로봇 용접작업자 1급, 2급 교육 및 시험 규정, 대한융접학회, 1998. (in Korean and English)
20. 조정윤, 박종성, 김상진 : 국가표준작무능력체계에 관한 연구, 한국직업능력개발원 (KRIVET), 2000, 134-137 (in Korean)

• 황선호 (포항상)
• 1942년생
• 한밭대학교 신소재공학부
• 용접인력 훈련, 용접아급, 철강재료
• e-mail: shhwang@hanbat.ac.kr