항공우주산업에서 용접·접합기술의 적용

김대업

Application of Welding and Joining Technology for Aircraft and Aerospace Industry

Dae-Up Kim

1. 서 론

항공우주산업은 신소재, 생명공학기술 등과 더불어 2000년대를 이끌 첨단기술산업으로서, 우리나라는 1987년부터 본격적인 항공우주산업 발전을 위한 체제를 갖추기 시작하였으며, 국가기술 경쟁력을 대표하는 산업으로서의 항공우주산업 기술의 육성 및 그 적용을 통하여 전 산업에 경제적, 기술적 파급효과를 극대화할 필요성이 대두되었다. 미국, 프랑스, 일본 등 선진국들은 기술의 선도적 역할로서 항공우주산업을 육성하고 있으며, 최신기술을 반영하여 특수목적의 항공기 개발을 추진하고 있고, 민간부문의 생산체제와 기업 규모, 보급액도가 병행하고 있다. 개발도상국은 산업전반의 기술능력 제고와 국방차원의 전략적 가치에 중점을 두어 1970년대 이후부터 집중 육성하고 있다.

우리나라의 항공산업은 선진공업국과의 경쟁적으로 기술도입가속화에 조립생산하는 수준에 머무르 있으나, 고부가가치의 설계 및 인프라에 의한 기술을 외국기술에 의존하고 있다. 우주산업은 1990년대 중반부터 통신방송위성 시대에의 진입을 추진하고 있으며, 이제 막 도약을 시도한다는 단계에 있다고 할 수 있다. 현재는 한국항공우주연구원을 중심으로 국내기업가들이 공동으로 21세기 항공우주 선진국 진입을 기반로 보수화하며, 항공기, 위성, 로켓, 군사시스템 및 핵심기술 개발과 고부가가치 첨단기술 개발 및 이들의 설계화를 추진하고 있다.

본 논문에서는 국내 항공우주산업 발전의 전략적 위치, 기술적 역량, 산업화의 지속성, 실용성·접합기술에 대하여 기술요약 한다.

2. 국내 항공우주산업의 발달사

2.1 발전역사 개요

항공우주산업의 수급실적을 Table 1에 나타내었다. 우리나라의 항공우주산업 생산규모는 연평균 10%정도로 증가하고 있다. 1999년 기준으로 국내 항공우주산업의 생산은 F-16 군용기 사업 등으로 1조 2,150억원을 기록하였으며, 수출은 3조 3,600억원만 달러로 국내생산의 약 33%를 차지하고 있다. 1990년 들어 25조 달러를 상회하여 수입규모가 외화위기의 맞아 운항사들의 여객기 도입이 감소하여 1999년은 전년대비 14.6% 감소하였다. 국내 항공우주산업의 1998년 말 기준 세계시장 점유율은 약 0.5%이며, 매출액 규모로 세계 15위이다.

<table>
<thead>
<tr>
<th>년도</th>
<th>생산</th>
<th>수입</th>
<th>계</th>
<th>수출</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>86</td>
<td>369</td>
<td>455</td>
<td>425</td>
</tr>
<tr>
<td>1990</td>
<td>218</td>
<td>2,631</td>
<td>4,486</td>
<td>1,297</td>
</tr>
<tr>
<td>1995</td>
<td>855</td>
<td>2,150</td>
<td>3,324</td>
<td>3,306</td>
</tr>
<tr>
<td>1997</td>
<td>1,269</td>
<td>2,055</td>
<td>2,285</td>
<td>3,112</td>
</tr>
<tr>
<td>1998</td>
<td>1,110</td>
<td>1,175</td>
<td>1,831</td>
<td>1,972</td>
</tr>
<tr>
<td>1999</td>
<td>1,110</td>
<td>1,080</td>
<td>2,089</td>
<td>313</td>
</tr>
</tbody>
</table>

2.2 항공산업 발달과정

조업에의 부품형성산으로 착수하여 비록 소량이지만, 항공기 수출시장을 개척하였다. 1990년대 들어 KFP 사업의 착수와 더욱이 UH 렌커플터, KTX 현대화 사업이 결정되어 업계에 많은 활기를 불어넣어 주기도 하였으며, MD-11 스포일러 독자설계, PW4000 엔진 및 Do328 커뮤니티의 공동생산 참여와 같은 국제협력 사업이 추진되었다. 1997년 3월에는 첨단의 복합제로를 착용, 순수 국산기술로 설계/개발된 생반 복합재료 항공기의 시험비행을 성공적으로 마친 바 있다.

23 우주산업 발달과정


발사체 분야의 연구개발은 1970년대 후반 국방과학연구소의 군용로켓 발사성공 등과 같이 위성분야에 비해 비교적 오랜 역사를 가지고 있으나, 이후 지속적인 연구개발 및 민간차원의 우주분야 개발로 전환되지 못하였다. 따라서, 우리전 1, 2호는 Arian(EU) 로켓으로 무궁화 위성이 Delta로켓(미)으로 발사하는 등 전통적으로 외국사에 의존하였다. 현재에도 국제기구와 견제와 감시가 심하여 외국으로부터의 기술전수가 극히 제한되어 있으나, 국가간 기술상해에도 불구하고 1997년부터 중형과학로켓을 발사한 바 있다(Fig. 1). Fig. 2에는 우리나라의 위성체 및 발사체 개발계획을 도식화하여 나타내었다. 우주개발 중장기계획에 의하여 3단형 가로로켓, 저궤도위성 발사용 로켓 등을 수작업적으로 개발하여 2005년에는 인공위성을 독자적으로 발사할 수 있는 능력을 확보할 계획이다.

Fig. 2 Development schedule of artificial satellite and launching vehicle

3. 항공기의 용접 합합기술

항공기는 많은 기술분야에 이루어진 시스템이므로, 경량, 고성능을 요구하는 상당히 가혹한 조건에서 설계되어 제작되기 때문에 신뢰성 향상을 위하여 적용되는 재료 및 가공법도 광범위하다. 금속재료로는 비중이 낮은 Mg합금, Al합금, Ti합금 및 내열성이 요구되는 부위에는 합금강, 내열강, 초내열합금이 사용되고 있으며, 플라스틱, 하이켐, 아크릴 유리등의 비금속이 주로 사용되고 있다. Fig. 3에는 항공기에 현재 적용되고 있는 재료 및 향후 신재료로서의 적용이 예상되는 구조재료를 나타내었다(3). 최근에는 경량화 및 고성능을 제하기 위하여 각종 섬유강화 복합재료의 사용이 증가되고 있다. 기존재료 및 신재료에 적용되는 용접법으로는 스프트용접, 브레이징, 전자파용접, 확산접합등이 있다.

Fig. 3 Development history of materials for aircraft body
3.1 기체

항공기에는 강관의 기체가 사용되어 용접을 이용한 조립공법이 많았으나, 이후에는 고강도 Al합금에 의한 semi mono coat구조가 광범위하게 기체에 사용되었다. 합금의 종류로는 Al-Zn-Cu-Mg계의 Al 7075가 주요구조재료로 사용되어 왔으며, 현재는 분말야금 합금, Al-Li합금 및 Al 2024, Al 7075를 개량한 합금이 주력재료로 대체되어 가고 있다. 이들 재료들은 상온성형성은 양호하나 용접이 용이하기 때문에 일반적으로 용접하지 않고 관광성형, 가계가공 및 리벳조립으로 제작되고 있다. 그러나, door나 cover류를 중심으로 판매가 1mm정도로 많은 판매에는 스폰용접이 혼히 지고 있으며, 성형성, 가공성을 우수한 Al 6061, Al 5052가 사용되는 즉각 연결방식에는 용접용접이 적용되고 있다.

항공기의 하나기구, 항공기의 블레이드 등에는 접착제로서 펄프를 주로 사용한 접착청 및 autoclave에 의한 기계로 가공이 주로 사용되고 있다. 또한, 스폰 용접시의 낮은 접착강도를 개선하고 접착점을 제거기구로 적합한 필름을 둘기 위하여 스폰용접과 접착청을 병합한 weldbond의 적용도 고려되고 있다. 현재 항공기 기체는 기존의 Al합금을 대체하여 탄소나 알리미드 등의 강화마그를 사용한 복합재료가 적용법을 확대해 가고 있으며, 항공기의 내장재품뿐만 아니라 구조재품의 적용이 실험화되고 있다. 복합재료의 제조는 프리프레스트 부품형상 및 용접형상에 맞게 절단, 적층하여 autoclave에 넣어 기화시키는 방법을 사용하고 있다. 복합재료의 껍데는 Ti합금제로 하는 이중재 접합부가 실험화되고 있으나, 대두가는 복합재의 열경화 파괴의 일부로서 접합도 장비에 달성되는 쿼리 반이 방식을 채용하고 있다. 복합재료가 사용된 부품은 일반적용 용접은 고려해 되고 있지 않다.

한편, Ti-6Al-4V 합금을 중심으로 비용도가 큰 Ti합금의 적용도 점차 증가하고 있다. 최근에는 Ti-15V-3Cr-3Al-3Sn이나 Ti-10V-2Fe-3Al 등의 metastable β합금도 일부 영역에서 사용되고 있으며, Ti합금은 Al매입합금의 달라지 용접력에 의한 제작일
화의 문제가 적기 때문에 용접구조에 사용된다. Al-Li합
에는 장기화용접 및 화학합합을 이용하고, TIG 용접, 스폰용접도 일부 적용되고 있다. 빅관의 합금구조에서 도 초소성 성형과 확장성을 조합한 일체화 가공법이 실험하고 있다. 그 외的 질강재료 및 저합금강에는 TIG용접, 전자빔용접 등도 용접용접이 행해지고 있으며, 각종 스테인리스강, Al, Mg주물의 보수에도 용접이 사용되고 있다.

Fig. 4 Appearance of part applied diffusion bonding and electron beam welding

3.2 엔진

항공기 엔진에 사용되는 재료는 비강도, 피로강도, 크리프강도, 내식성등과 같이 엔진의 각 부분의 요구 특성에 부합하는 다양한 종류의 재료가 사용되고 있다. 대부분은 Ti합금과 Ni합금이다. 최근에는 엔진의 추력, 연료 소비율, 신뢰성 및 내구성의 향상과 같은 다양한 요구에 대응하기 위하여 일반면 및 단결정 초내열합금, 중화물 분산강화(ODS)합금, 초소성 분말재료, 섬유강
화 플라스틱(FRP) 등의 섬유재료가 개발되어 적용 증가 추세에 있으며, 고온에서의 내식성 향상을 위한 thermal barrier coating 등의 공정개발도 이루어지고 있다.

엔진부품은 복잡한 형상을 가지는 박막구조로서 고정밀도의 홈공성이 요구되고, 용접성이 난 복잡히 나 산화에 잘하지 않으므로 Ti합금이 많이 사용되는 부분이 많기 때문에 다양화된 용접법이 적용되고 있다. TIG용접은 가장 많은 비중을 차지하는 용접법이다. 보다 고급의 정밀한 용접이 가능한 전자빔용접, 브레 이징, 확산합합, 레이저용접 및 용접을 사용하는 부품이 증가하고 있다.

TIG용접은 판데리가 1mm전후의 케이스, 배관 등의 박막부품의 용접에 적용되어 비교적 양호한 성능이 얻어진다. 전자빔용접은 용접용접법으로는 TIG용접 다음으로 많이 적용되고 있고, 고가급의 부품의 보수에도 편리하게 사용되고 있다. Fig. 5는 사용조건에 가혹한 회전적인 Ti합금계 compressor rotor를 전자빔용접한 예를 나타낸다. 플라즈마 용접은 TIG용접보다 용접이 쉽고 변형이 적고 전자빔용접에 비해 설비비 및 생산성에 이점이 있기 때문에 판 두께가 2-6mm정도의 case나 frame에 사용되고 있으며, 향후 적용분야가 확대될 것으로 예상된다.

레이저용접은 전자빔용접과 유사한 장점을 가지고 있으나, 비 misma 분류기준에서도 연조작업이 가능하기 때문에 생산성이 높다. Ni기 초내열합금이나 Ti합금의 case 혹은 turbine blade의 shroud notch의 내마모
Fig. 5 Appearance of electron beam welded compressor rotor

경화 육성용접에 적용되고 있다. 또한, 마찰용접법은 재료의 열화가 적고 이중계의 집합도 가능하기 때문에 엔진의 compressor disk나 turbine disk등의 회전체의 원주응력에 적용된다.

한편, 엔진부품의 브레이징에 대해서 보면, 용융용접법에 비해 높은 가열장방식이기 때문에 복합한 부품에서도 변형이 적은 집합이 가능하며, 건강성에 의한 로내 브레이징을 주로 사용하고 있다. Filler metal은 로-unstyled 및 용도에 따라 다양하게 사용되고 있으며, Ag, Au, Ni, Co, Cu, Al가 있다. 특히, Au-Ni계 filler metal은 고기이나 변성화, 내식성, 연성 등이 우수하기 때문에 Ni 브레이징에서 문제가 되는 부위에 사용된다. 대표적인 적용부위로서는 압축기 날개, 연소기 라인, turbine blade 하부점 연소, 배관 등이다. Fig. 6은 브레이징에 의해 조립된 황공기 압축기 날개를 나타낸 것이다. 또한, (Al+Ti)합금이 높은 turbine blade용 압착량 및 단결정 Ni합금이나 ODS 합금 등의 신재료는 용융용접이 과선하기 때문에 브레이징이 적용된다. 그러나, 용접부 및 브레이징부의 강도는 모체강도에 비해 떨어지기 때문에모체와 동일 정도의 강도를 얻을 수 있는 확산접합이 적용된다. TIG 합금의 확산접합은 경량화를 목적으로 중공판 납개 및 린시스크에 적용되며, Ni기 초내열합금은 확산접합이 곤란하기 때문에 신부에 가까운 용접선 인서트금 속을 이용한 역상확산접합법이 turbine blade등에 적용되고 있다.

또한, 용사는 표면개질 기술의 하나로서 fan blade, turbine blade등과 같은 고기의 향상기술부품이 많으므로 수상되었을 때 보수기술로서 필수적인 기술이다. 용사제료로는 500℃까지의 중·저온부에 WC-Co계가 고온부에는 CrC 및 스펙트라이트가 사용된다.

4. 우주로켓의 용접·접합기술

우주로켓은 로켓, 인공위성, 우주 station, 케이세가 속으, 우주항공기 등으로 광범위하게 사용되고 있으며, 로켓은 우주개발의 시작이라 할 수 있다. 로켓은 대부분을 점하는 엔포레그, 산화질합금은 용접구조로 되어 있는 일종의 압력용기고, 엔진, 배관에도 광범위하게 적용이 되어 있어서 전반적으로 용접·접합기술은 로켓작업의 핵심기술이다. 경량화, 고강도, 극저온, 초 고온 등의 극단적인 기술요구에 대응하기 위하여 마르 에이징강, 고강도 Al합금, Ti합금, 복합재료 등의 신재료가 사용되고 있다. 용접·접합법으로서는 TIG용접이 가장 많이 적용되고 있고, 그 외 MIG용접, 전자빔 용접, 브라이징, 확산접합등의 접합법이 적합한 각종 요소에 적용되고 있으며, 신용접법도 개발되어 적용이 확보중이다.

4.1 기체

로켓의 기체구조에서 최대의 구조물은 엔포판 및 산화재 밴크이다. 로켓엔포판용 재료로서는 경량, 고강도가 중요하기 때문에 항공기부와 같이 Al2024, Al7075 와 같은 고력 Al합금이 광범위하게 사용되고 있다. 그러나, 용접성 측면에서 부적합하여 우주개발 초기에는 Al2014가 채용되었으나, 용접부석이나 보수용접등 제 조공정 안정성이 문제로 되어 용접부에서 극저온에서 파악부위가 수선한 Al2219가 사용되어 오고 있다.

용접방법으로서는 초기에는 밴크의 검이나 위치판방에 대해서 MIG용접이 사용되었으나, TIG용접이 야크의 안정성, 적응가능범위가 넓기 때문에 신뢰성을 증가 하는 이 분야에서는 일급위해 적용되어 고품질 용접을 실현하고 있다. 로켓 밴크의 용접장치는 Fig. 7에
Fig. 7 Appearance of welding apparatus for rocket tank

나타내었다. 로켓에 적용되는 추진제 핫크 용접부의 판 두께는 대략 10~15mm이다. 추진제 핫크는 프레스성형과 chemical milling에 의해 만들어진 반구 일부과 길림 성형한 원통설린더를 원주방향 용접으로 결합해서 조립된다. 고, 일부 이음부에는 격류혁극성 (DCRP) MIG용접, 전자빔용접이나 플라즈마용접이 혼용되기도 한다. 최근 Detla로켓(米)에는 마찰교환용접 (FSW: Friction Stir Welding)을 적용하고 있다. Space Shuttle의 연료탱크에는 TIG용접 및 극성가변식 플라즈마 아크 (VPPA)용접을 로봇화해서 실시하고 있다.

Ti-6Al-4V ELI 재료가 사용되는 극저온의 핫什么事情 등의 용접에는 전자빔용접을 행하고 있고, 용접시 핫크 내부를 청정하게 하고 sputter발생을 방지할 수 있는 defocus 전자빔용접이 적용되고 있다.

또한, 로켓의 대형화나 이음부 형상의 다양화, 제조 비용의 절감 등을 위하여 CNC 전자매체용접의 적용이 검토되고 있고, 용접전처리 및 정밀도 관리 를 위하여 DCSP-TIG용접에 국한 단시간 DCRP-TIG용접을 행하여 개선 청정효과를 얻는 등 다양한 용접기술의 고도화도 시행되고 있다.

4.2 엔진

로켓엔진에는 TIG용접, 전자빔용접 및 브레이징이 주요접합기술로서 적용되고 있으며, 일부 부분에 확산 접합이나 레이저용접도 실시하고 있다.

전자빔용접은 가열이 매우 적으로 인해 재료가 증거 때문에 인체에와 같이 엔진의 특성에 중요한 영향을 미치고 공차가 엄격하거나 밀봉 부분에 적용하고 있다. 전자빔용접은 특수용접으로도 0.1mm이내의 정밀도로 관리할 수 있다. 또한, 재생생각고조를 가지는 노즐 내벽에 사용되는 Ti-6Al-4V 엔진의 확장과 외벽에 사용되는 Ni기 초내열합결과의 이중계 용접 등에도 적용되고 있다. 그 외 Ti합금의 핫什么事情, Al 합금체의 본배기, 터보 패프의 shaft 등에도 전자빔용접이 행해지고 있다.

브레이징은 재생생각고조로 된 노즐 스키트나 혼합기의 조립시 적용하고 있다. 일반적으로 수소나 금속분위기에서 로증 브레이징이 적용되나, 브레이징 분위기의 정밀도를 높이고 Ag, Cu, Mn등 증가성이 높은 원소의 증발을 억제하기 위하여 진공중에서 고순도의 아르곤 가스를 불어넣어 유량 및 로압을 제어하는 방식을 탐색하기도 한다. 사용되는 삽입금속으로는 과거에는 Au, Pd계 삽입금속이 사용되어 왔으나, 근래에는 재작비용의 절감 및 최용성 향상을 위하여 Ag-(Cu)-Pd 삽입금속이 많이 사용된다. Fig. 8에는 현재 국내에서 개발되고 있는 KSR-III 엔진의 핫크의 외관을 나타내었다.

어기에서는 주로 TIG용접 및 브레이징에 의해 조립되었다. 브레이징은 Fig. 9에 보이듯이 바와 같이, AMS4764 삽입금속을 브레이징부에 스포트용접하여 setting시킨 후

Fig. 8 KSR-III liquid rocket engine (13ten)

Fig. 9 Appearance of filler metal setting by spot welding before brazing
항공우주산업은 21세기 정보산업, 신소재산업 등 각 분야의 첨단사업을 주도해 나갈 미래 육망산업이다. 항공우주산업에서 특정분야의 기술개발은 연관산업의 기술개발에 미치는 평가효과가 매우 크며, 역으로 연관산업분야의 기술발전은 항공우주산업의 발전에 크게 기여하게 된다. 이는 복합시스템 산업으로서 항공우주산업 업계가 가질 수 있는 특징이라 할 수 있다. 이와 같은 견해에서 우리나라 항공우주산업의 육성은 국내산업의 기술수준을 한 단계 고도화시킬 수 있는 기회를 제공하게 되며, 이를 통해서 초고열 기공기술, 정밀기구, 신소재기술, 용접·접합기술 등 각종 첨단기술의 확산을 도모할 수 있게 될 것이다.

미래기술인 항공 및 우주개발의 전개는 재료기술이나 접합기술의 발전이야도 수반될 수 없으며, 보다 혁신적인 로켓기술개발을 실현시키기 위해서는 재료개발 및 용접·접합기술의 계발이 필수적이다. 21세기에 계획되고 있는 차세대항공기 및 로켓의 개발은 지금까지의 배반을 대폭 상회하는 열링함과 경향화 특성이 고려된 전후 새로운 재료의 개발이 강력하게 요구되고 있다. 이를 달성하기 위해서는 사용환경특성이나 조건 등을 고려한 최적재료의 개발/선정, 설계와의 조합, 기능의 복합화/경사화 및 제작기술의 개발 등이 필요하다. 현재 미국, 일본 등의 기술선진국에서는 항공기나 로켓의 성능향상 요구에 따라 고력용접용 Al-Li합금의 개발이나, 용접법으로서 VPPAW(극성교환 플라즈마 용접법)등의 개발이 추진되고 있으며, 내용량이 높고 비강도가 높은 상황을 고려한 접합재료, 접합기구, 굴착간화합물 등이 적용도 검토하고 있다.

항후 대형기, 고성능기, 고속기, 항공우주 복합체 등 목표로 항공우주에서는 초대형 상용항력기, 초음속 여객기, 수직이착륙 규모기 개발을 목표로 하고 있으며, 우주분야에서는 미래의 대형위성, 우주기지, 대 표범기지, 화성유인탐사 및 수송시스템으로서의 대형로켓이나 우주항복선 등이 개발될 것으로 예상된다. 이에 따라 경쟁이면서 고온 혹은 극저온에 대한 내구성, 가공성, 성형성을 검비한 새로운 재료의 개발 및 신용접·접합 기술의 개발 등 적용기술의 혁신이 기대되고 있다.

참고 문헌

김대업(金大業)
1965년생
현대 MOBIS(주) 기술연구소
철강 및 내열계 용접접합, 용접아무
e-mail: aeupkim@mobis.co.kr

大韓造船学会誌 第20巻 第5號, 2002年 10月

617